Incidental scene text detection, especially for multioriented text regions, is one of the most challenging tasks in many computer vision applications. Different from the common object detection task, scene text often suffers from a large variance of aspect ratio, scale, and orientation. To solve this problem, we propose a novel end-to-end scene text detector IncepText from an instance-aware segmentation perspective. We design a novel Inception-Text module and introduce deformable PSROI pooling to deal with multi-oriented text detection. Extensive experiments on ICDAR2015, RCTW-17, and MSRA-TD500 datasets demonstrate our method's superiority in terms of both effectiveness and efficiency. Our proposed method achieves 1st place result on ICDAR2015 challenge and the state-ofthe-art performance on other datasets. Moreover, we have released our implementation as an OCR product which is available for public access. 1
Structured information extraction from document images usually consists of three steps: text detection, text recognition, and text field labeling. While text detection and text recognition have been heavily studied and improved a lot in literature, text field labeling is less explored and still faces many challenges. Existing learning based methods for text labeling task usually require a large amount of labeled examples to train a specific model for each type of document. However, collecting large amounts of document images and labeling them is difficult and sometimes impossible due to privacy issues. Deploying separate models for each type of document also consumes a lot of resources. Facing these challenges, we explore one-shot learning for the text field labeling task. Existing one-shot learning methods for the task are mostly rule-based and have difficulty in labeling fields in crowded regions with few landmarks and fields consisting of multiple separate text regions. To alleviate these problems, we proposed a novel deep end-to-end trainable approach for one-shot text field labeling, which makes use of attention mechanism to transfer the layout information between document images. We further applied conditional random field on the transferred layout information for the refinement of field labeling. We collected and annotated a real-world one-shot field labeling dataset with a large variety of document types and conducted extensive experiments to examine the effectiveness of the proposed model. To stimulate research in this direction, the collected dataset and the one-shot model will be released 1. CCS CONCEPTS • Applied computing → Document analysis; Optical character recognition; • Computing methodologies → Visual contentbased indexing and retrieval.
We present EasyASR, a distributed machine learning platform for training and serving large-scale Automatic Speech Recognition (ASR) models, as well as collecting and processing audio data at scale. Our platform is built upon the Machine Learning Platform for AI of Alibaba Cloud. Its main functionality is to support efficient learning and inference for end-to-end ASR models on distributed GPU clusters. It allows users to learn ASR models with either pre-defined or user-customized network architectures via simple user interface. On EasyASR, we have produced state-of-the-art results over several public datasets for Mandarin speech recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.