Colitis-associated
colorectal cancer (CAC), in which chronic inflammation
is a well-recognized carcinogen, requires concurrent anti-inflammation
and antitumor treatments in the clinic. Herein, we report polyethylene
glycol (PEG)-coated (PEGylated) ultrasmall rhodium nanodots (Rh-PEG
NDs) can serve as a metallic nanozyme with reactive oxygen and nitrogen
species (RONS) scavenging properties as well as photothermal activities
for anti-inflammation and antitumor theranostics in colon diseases.
Benefiting from multienzyme activities against RONS, Rh-PEG NDs can
decrease the levels of pro-inflammatory cytokines (TNF-α, IL-6),
resulting in good anti-inflammatory effect on dextran sulfate sodium-induced
colitis. By virtue of high photothermal conversion efficiency (48.9%),
Rh-PEG NDs demonstrate complete ablation of CT-26 colon tumor without
any recurrence. Most importantly, Rh-PEG NDs exhibit good biocompatibility
both at the cellular and animal levels. Our findings provide a paradigm
to utilize metallic nanozymes for the potential management of colon
diseases.
Rh NPs/Ce6 loaded mesoporous polydopamine (Ce6-Rh@MPDA) nanoparticles were developed to achieve photoacoustic/fluorescence imaging-guided photothermal and photodynamic therapy to eliminate tumors and improve hypoxia in tumor microenvironments.
Summary
Riboflavin is the precursor of essential cofactors for diverse metabolic processes. Unlike animals, plants can de novo produce riboflavin through an ancestrally conserved pathway, like bacteria and fungi. However, the mechanism by which riboflavin regulates seed development is poorly understood. Here, we report a novel maize (Zea mays L.) opaque mutant o18, which displays an increase in lysine accumulation, but impaired endosperm filling and embryo development. O18 encodes a rate‐limiting bifunctional enzyme ZmRIBA1, targeted to plastid where to initiate riboflavin biosynthesis. Loss of function of O18 specifically disrupts respiratory complexes I and II, but also decreases SDH1 flavinylation, and in turn shifts the mitochondrial tricarboxylic acid (TCA) cycle to glycolysis. The deprivation of cellular energy leads to cell‐cycle arrest at G1 and S phases in both mitosis and endoreduplication during endosperm development. The unexpected up‐regulation of cell‐cycle genes in o18 correlates with the increase of H3K4me3 levels, revealing a possible H3K4me‐mediated epigenetic back‐up mechanism for cell‐cycle progression under unfavourable circumstances. Overexpression of O18 increases riboflavin production and confers osmotic tolerance. Altogether, our results substantiate a key role of riboflavin in coordinating cellular energy and cell cycle to modulate maize endosperm development.
Due to their flexible composition, large surface areas, versatile surface properties, and degradability, nanoscale metal organic frameworks (nano MOFs) are drawing significant attention in nanomedicine. In particular, iron trimesate MIL-100 (Fe) is studied extensively in the drug delivery field. Nanosized MIL-100 (Fe) are obtained mostly by microwave-assisted synthesis. Simpler, room-temperature (RT) synthesis methods attract growing interest and have scale-up potential. However, the preparation of RT MIL100 is still very challenging because of the high tendency of the nanoparticles to aggregate during their synthesis, purification and storage. To address this issue, we prepared RT MIL100 using acetic acid as a modulator and used non-toxic cyclodextrin-based coatings to ensure stability upon storage. Hydrodynamic diameters less than 100 nm were obtained after RT synthesis, however, ultrasonication was needed to disaggregate the nanoparticles after their purification by centrifugation. The model drug adenosine monophosphate (AMP) was successfully encapsulated in RT MIL100 obtained using acetic acid as a modulator. The coated RT MIL100 has CD-exhibited degradability, good colloidal stability, low cytotoxicity, as well as high drug payload efficiency. Further studies will focus on applications in the field of cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.