Gene regulation and metabolism are two fundamental processes that coordinate the selfrenewal and differentiation of neural precursor cells (NPCs) in the developing mammalian brain. However, little is known about how metabolic signals instruct gene expression to control NPC homeostasis. Here, we show that methylglyoxal, a glycolytic intermediate metabolite, modulates Notch signalling to regulate NPC fate decision. We find that increased methylglyoxal suppresses the translation of Notch1 receptor mRNA in mouse and human NPCs, which is mediated by binding of the glycolytic enzyme GAPDH to an AU-rich region within Notch1 3ʹUTR. Interestingly, methylglyoxal inhibits the enzymatic activity of GAPDH and engages it as an RNA-binding protein to suppress Notch1 translation. Reducing GAPDH levels or restoring Notch signalling rescues methylglyoxal-induced NPC depletion and premature differentiation in the developing mouse cortex. Taken together, our data indicates that methylglyoxal couples the metabolic and translational control of Notch signalling to control NPC homeostasis.
Allergic asthma is a typical chronic inflammatory disease of respiratory tract. Clinical data shows that patients with allergic asthma have different degrees of cognitive dysfunction. The molecular mechanism underlying the pathogenesis of asthma-induced cognitive disorder is not yet well defined. Dexamethasone (DEX), one of the first-line drugs being widely used in the treatment of asthma, has not been reported to have an effect on cognitive dysfunction in mice model. To investigate the effect of asthma on cognitive impairment as well as the effect of DEX on asthma-caused morphological and behavioral changes, C57BL/6J mice received treatment with house dust mites (HDM) for 60 days to become allergic asthma model mice, and a group of HDM-treated asthma model mice were treated with DEX. HDM-treated asthma model mice exhibited increased airway hyperresponsiveness (AHR) and inflammatory infiltration in lung tissue. An elevated level of IL-4, IL-5, and TNF-α was detected in bronchoalveolar lavage fluid (BALF) by Luminex liquid suspension chip. Asthma model mice also presented memory deficits accompanied with morphological changes at the synaptic levels in the cortex and hippocampus. Meanwhile, vascular edema and increased expression of HIF-1α and HIF-2α were found in the brain of asthma model mice. Interestingly, DEX treatment could reverse the inflammatory changes in asthma model mice airway, rescue the cognitive impairment and improve the synaptic plasticity. Besides, DEX significantly decreased the expression of HIF-1α and HIF-2α in mice brain and lung. These processes may be used to decipher the complex interplay and pathological changes between asthma and cognition. This study provides laboratory evidence for the prevention and treatment of cognitive malfunction induced by asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.