Objective: Lingzhihuang capsule (LZHC) is a natural product that consists of 10 commonly used medicinal plants, and it is used in traditional Chinese medicine to promote people's overall health. Previously, LZHC was successfully used as adjuvant therapy for treating patients with cancer. However, the chemical constituents of LZHC and their potential biological functions remain unclear. The aim of this study is to investigate the major bioactive compounds in LZHC and predict their pharmacological targets.Methods: The LZHC constituents were putatively identified by ultra-high performance liquid chromatography coupled with timeof-flight mass spectrometry combined with mass spectrometry-based molecular networking. The targets were predicted using SwissTargetPrediction software, and the associated gene ontology and Kyoto encyclopedia of genes and genomes pathways were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. The mass spectrometry-based molecular network and compound-target-pathway network were constructed using Cytoscape 3.8.0 software. Results:We putatively identified 94 compounds of LZHC by mass spectrometry-based molecular networking, including triterpene (the main structural type) and other clusters (ie, flavonoids and organic acids). Our results suggested that multiple pivotal targets were regulated by LZHC, including tumor necrosis factor, nitric oxide synthase 2, glucocorticoid receptor, estrogen receptor, 3-oxo-5-alpha-steroid 4-dehydrogenase 2, prostaglandin e2 receptor ep4 subtype, estrogen receptor beta, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform, mitogen-activated protein kinase 3, and racalpha serine, which are related to signal transduction, positive regulation of transcription from RNA polymerase II promoters, oxidation-reduction processes, inflammatory responses, and other biological processes. Functional annotation of those targets suggested that several signaling pathways may be regulated by LZHC, such as cancer-related proteoglycans, the PI3K-Aktsignaling pathway, and the cAMP-signaling pathway.Conclusions: Our findings reveal the chemical constituents of LZHC and provided scientific support for the efficacy of LZHC in terms of immune regulation, anti-aging, and tumor suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.