Composite nanofibers of biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) encapsulating chitosan/siRNA nanoparticles (NPs) were prepared by electrospinning. Acidic/alkaline hydrolysis and a bulk/surface degradation mechanism were investigated in order to achieve an optimized release profile for prolonged and efficient gene silencing. Thermo-controlled AFM in situ imaging not only revealed the integrity of the encapsulated chitosan/siRNA polyplex but also shed light on the decreasing T(g) of PLGA on the fiber surfaces during release. A triphasic release profile based on bulk erosion was obtained at pH 7.4, while a triphasic release profile involving both surface erosion and bulk erosion was obtained at pH 5.5. A short alkaline pretreatment provided a homogeneous hydrolysis and consequently a nearly zero-order release profile. The interesting release profile was further investigated for siRNA transfection, where the encapsulated chitosan/siRNA NPs exhibited up to 50% EGFP gene silencing activity after 48 h post-transfection on H1299 cells.
Background: Using a toxin-induced nonhuman primate model of acute liver failure (ALF), we previously reported that peripheral infusion of human umbilical cord mesenchymal stem cells (hUC-MSCs) strongly suppresses the activation of circulating monocytes and interleukin-6 (IL-6) production, thereby disrupting the development of a cytokine storm and improving the prognosis of monkeys. MSCs are considered to play a therapeutic role under different stresses by adaptively producing specific factors, prompting us to investigate the factors that hUC-MSCs produce in response to high serum levels of IL-6, which plays a critical role in initiating and accelerating ALF. Methods: We stimulated hUC-MSCs with IL-6, and the hUC-MSC-derived exosomes were deeply sequenced. The miRNAs in the exosomes that have potential to suppress IL-6-associated signaling pathway were screened, and the role of one of the most possible miRNAs was tested in the mouse model of inflammatory liver injury. Result: We determined that miR-455-3p, which is secreted through exosomes and potentially targets PI3K signaling, was highly produced by hUC-MSCs with IL-6 stimulation. The miR-455-3p-enriched exosomes could inhibit the activation and cytokine production of macrophages challenged with lipopolysaccharide (LPS) both in vivo and in vitro. In a chemical liver injury mouse model, enforced expression of miR-455-3p could attenuate macrophage infiltration and local liver damage and reduce the serum levels of inflammatory factors, thereby improving liver histology and systemic disorder. Conclusions: miR-455-3p-enriched exosomes derived from hUC-MSCs are a promising therapy for acute inflammatory liver injury.
Core-sheath nanofibers with biodegradable polycaprolactone (PCL) as the core and thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) as the sheath were prepared by single-spinneret electrospinning of blends of the two polymers. The morphology of the composite fibers with different proportions of PNIPAAm to PCL was determined using scanning electron microscopy (SEM). Surface enrichment of PNIPAAm was confirmed by both x-ray photoelectron spectroscopy (XPS) quantification and time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. It was found that the phase separation was driven by both thermostatic/kinetic factors and electricfield-orientation effects. The combination of appropriate choice of miscible solvents with large parameter differences (solubility of the two polymers, dielectric constant, and evaporation speed during jet traveling) and difference in molecular weight/viscosity of the two polymers contributed to the core-sheath self-assembly. The thermo-responsive wettabilites of the PNIPAAm dominant fibrous surfaces were demonstrated using contact angle (CA) measurements and a microcontact printing (μCP) method.
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.