The surface structures, bond variations, and segregation of oxygen vacancies play crucial roles in the structural stability and functionality of nanocrystalline rare‐earth zirconate pyrochlores. In this work, the stabilities of (1 0 0), (1 1 0), and (1 1 1) surfaces of pyrochlore A2Zr2O7 (A = La, Ce, Pr, Nd, Pm, Sm, Eu, or Gd) are investigated by first‐principles calculations. Surface reconstruction occurs on (1 1 0) surface with a transition of ZrO6 octahedron to ZrO4 tetrahedron, leading to their large relaxation energies. In combination with the small amount of broken bonds during the surface formation process, the (1 1 0) surfaces are identified having the lowest surface formation energies than the (1 0 0) and (1 1 1) surfaces. Moreover, the reconstructed (1 1 0) surface has characteristics of the segregation of oxygen vacancies. The surface oxygen vacancies have the low migration barriers (<1.2 eV), which are comparable with those in bulk and ensure the long‐distance diffusion of oxygen vacancies in A2Zr2O7. These discoveries provide fundamental insight to the surface structure and related oxygen vacancy behavior, which are expected to guide the optimization of the surface related properties for nanocrystalline rare‐earth zirconates.
To explore the underlying mechanism of chemical disorder in high-entropy pyrochlores, ten rare earth zirconates ( nRE1/ n)2Zr2O7 ( n = 1, 2, and 4, RE = La, Nb, Sm, Eu, and Gd) are studied by using first-principles calculations. The mechanical and thermal properties are carefully analyzed with a special focus on local structural evolution and interatomic interaction. It is found that all three kinds of bond lengths increase linearly with lattice parameters whether the pyrochlore involves chemical disorder or not. Compared with the single-component counterparts, the multi-component pyrochlores are recognized to exhibit higher elastic constants and moduli but lower elastic anisotropy. Meanwhile, (LaSmEuGd)2Zr2O7 shows the lowest thermal conductivity, which can be attributed to the larger La atoms and the weaker La–O bonding. Furthermore, the abnormal strengthening of phonon anharmonicity in (SmEu)2Zr2O7 emphasizes the significance of fluctuation in local distortion rather than enhancement in chemical disorder on decreasing thermal conductivity for high-entropy ceramics. This work uncovers the physical origins of the chemical disorder effect on mechanical and thermal properties for pyrochlores and further shed some lights on the design of high-performance high-entropy ceramics with great potential applications including thermal barrier coatings.
Corrosion of silica surfaces by solutions of sodium chloride (NaCl) occurs often; the aggregation of ions and water molecules on the silica surface represents the first step. In this work, the structure and dynamics of ions and water molecules at the silica–solution interface were studied by molecular dynamics simulations. The influence of different NaCl concentrations was explored. With an increase in the NaCl concentration, the hydrogen bonds among water molecules are broken gradually. Meanwhile, more and more water molecules were involved in ionic hydration. Furthermore, the aggregation of ions observed at the silica–liquid interface layer was due to ion hydration. At high NaCl concentrations, self-diffusion of Na+ and Cl− slowed due to the enhanced Coulombic effect and fewer water molecules surrounding an ion during ionic hydration. This work provides a fundamental understanding of the salt solution behavior on a silica surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.