In this study, the effects of residual stress induced by three different cooling methods during heat treatment on the crack propagation behaviour of the GH4169 disc were investigated. Different levels of stress fields were induced to the specially designed discs by using air cooling (AC), air jetting cooling (AJC) and water quenching (WQ) methods and were quantitated by numerical simulation. These discs were then subjected to prefabricated cracking, and crack propagation tests were conducted on a spin tester with two load spectrums. Crack growth behaviour was depicted via the surface replica technique and fracture morphology. Regarding the linear superposition of residual stress and centrifugal force, the crack propagation behaviour of different discs was simulated using the FRANC3D software. AJC and WQ introduced compressive residual stress (−259 MPa and −109 MPa, respectively) into the disc compared with the AC method (about −1.5 MPa). The AJC method increases the crack propagation life of the disc by introducing residual compressive stress into the area near the surface of the central hole to inhibit the opening of the crack surface. When the fatigue load was low, this inhibition effect was more significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.