In this paper, we consider the cardinality-constrained optimization problem and propose a new sequential optimality condition for the continuous relaxation reformulation which is popular recently. It is stronger than the existing results and is still a first-order necessity condition for the cardinality constraint problem without any additional assumptions. Meanwhile, we provide a problem-tailored weaker constraint qualification, which can guarantee that new sequential conditions are Mordukhovich-type stationary points. On the other hand, we improve the theoretical results of the augmented Lagrangian algorithm. Under the same condition as the existing results, we prove that any feasible accumulation point of the iterative sequence generated by the algorithm satisfies the new sequence optimality condition. Furthermore, the algorithm can converge to the Mordukhovich-type (essentially strong) stationary point if the problem-tailored constraint qualification is satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.