Suboptimal gestational weight gain (GWG), which is linked to increased risk of adverse outcomes for a pregnant woman and her infant, is prevalent. In the study of a large cohort of Canadian pregnant women, our goals are to estimate the individual weight growth trajectory using sparsely collected bodyweight data, and to identify the factors affecting the weight change during pregnancy, such as prepregnancy body mass index (BMI), dietary intakes and physical activity. The first goal was achieved through functional principal component analysis (FPCA) by conditional expectation. For the second goal, we used linear regression with the total weight gain as the response variable. The trajectory modeling through FPCA had a significantly smaller root mean square error (RMSE) and improved adaptability than the classic nonlinear mixed-effect models, demonstrating a novel tool that can be used to facilitate real time monitoring and interventions of GWG. Our regression analysis showed that prepregnancy BMI had a high predictive value for the weight changes during pregnancy, which agrees with the published weight gain guideline.
Background Health utilities from value sets for the EQ-5D-5L are commonly used in economic evaluations. We examined whether modeling spatial correlation among health states could improve the precision of the value sets. Methods Using data from 7 EQ-5D-5L valuation studies, we compared the predictive precision of the published linear model, a recently proposed cross-attribute level effects (CALE) model, and 2 Bayesian models with spatial correlation. Predictive precision was quantified through the root mean squared error (RMSE) for out-of-sample predictions of state-level mean utilities on omitting individual states, as well as omitting blocks of states. Results In all 7 countries, on omitting single health states, Bayesian models with spatial correlation improved upon the published linear model: the RMSEs for the originally published models, 0.050, 0.051, 0.060, 0.061, 0.039, 0.050, and 0.087 for Canada, China, Germany, Indonesia, Japan, Korea, and the Netherlands, respectively, could be reduced to 0.043, 0.042, 0.051, 0.054, 0.037, 0.037, and 0.085, respectively. On omitting blocks of health states, Bayesian models with spatial correlation led to smaller RMSEs in 3 countries, while the CALE model led to smaller RMSEs in the remaining 4 countries. Discussion: Bayesian models incorporating spatial correlation and CALE models are promising for improving the precision of value sets for the EQ-5D-5L. The differential performance of the Bayesian models on omitting single states versus blocks of states suggests that designing valuation studies to capture more health states may further improve precision. We suggest that Bayesian and CALE models be considered as candidates when creating value sets and that alternative designs be explored; this is vital as the prediction errors in value sets need to be smaller than the minimal important difference of the instrument. Highlights The accuracy of value sets of multi-attribute utility instruments is typically of the same order of magnitude as the instrument’s minimal important difference and would benefit from improvement. Bayesian models with spatial correlation have been shown to improve value set accuracy in isolated cases. We showed that Bayesian approaches with spatial correlation improved predictive precision in 7 EQ-5D-5L valuation studies. We recommend that Bayesian models incorporating spatial correlation be considered when creating value sets and have provided code for fitting them.
Since the sure independence screening (SIS) method by Fan and Lv, many different variable screening methods have been proposed based on different measures under different models. However, most of these methods are designed for specific models. In practice, we often have very little information about the data generating process and different methods can result in very different sets of features. The heterogeneity presented here motivates us to combine various screening methods simultaneously. In this paper, we introduce a general ensemble-based framework to efficiently combine results from multiple variable screening methods. The consistency and sure screening property of proposed framework has been established. Extensive simulation studies confirm our intuition that the proposed ensemble-based method is more robust against model specification than using single variable screening method. The proposed ensemble-based method is used to predict attention deficit hyperactivity disorder (ADHD) status using brain function connectivity (FC).
Background In eliciting utilities to value multiattribute utility instruments, discrete choice experiments (DCEs) administered online are less costly than interviewer-facilitated time tradeoff (TTO) tasks. DCEs capture utilities on a latent scale and are often coupled with a small number of TTO tasks to anchor utilities to the interval scale. Given the costly nature of TTO data, design strategies that maximize value set precision per TTO response are critical. Methods Under simplifying assumptions, we expressed the mean square prediction error (MSE) of the final value set as a function of the number [Formula: see text] of TTO-valued health states and the variance [Formula: see text] of the states’ latent utilities. We hypothesized that even when these assumptions do not hold, the MSE 1) decreases as [Formula: see text] increases while holding [Formula: see text] fixed and 2) decreases as [Formula: see text] increases while holding [Formula: see text] fixed. We used simulation to examine whether there was empirical support for our hypotheses a) assuming an underlying linear relationship between TTO and DCE utilities and b) using published results from the Dutch, US, and Indonesian EQ-5D-5L valuation studies. Results Simulation set (a) supported the hypotheses, as did simulations parameterized using valuation data from Indonesia, which showed a linear relationship between TTO and DCE utilities. The US and Dutch valuation data showed nonlinear relationships between TTO and DCE utilities and did not support the hypotheses. Specifically, for fixed [Formula: see text], smaller values of [Formula: see text] reduced rather than increased the MSE. Conclusions Given that, in practice, the underlying relationship between TTO and DCE utilities may be nonlinear, health states for TTO valuation should be placed evenly across the latent utility scale to avoid systematic bias in some regions of the scale. Highlights Valuation studies may feature a large number of respondents completing discrete choice tasks online, with a smaller number of respondents completing time tradeoff (TTO) tasks to anchor the discrete choice utilities to an interval scale. We show that having each TTO respondent complete multiple tasks rather than a single task improves value set precision. Keeping the total number of TTO respondents and the number of tasks per respondent fixed, having 20 health states directly valued through TTO leads to better predictive precision than valuing 10 health states directly. If DCE latent utilities and TTO utilities follow a perfect linear relationship, choosing the TTO states to be valued by weighting on the 2 ends of the latent utility scale leads to better predictive precision than choosing states evenly across the latent utility scale. Conversely, if DCE latent utilities and TTO utilities do not follow a linear relationship, choosing the states to be valued using TTO evenly across the latent utility scale leads to better predictive precision than weighted selection does. In the context of valuation of the EQ-5D-Y-3L, we recommend valuing 20 or more health states using TTO and placing them evenly across the latent utility scale.
Two-phase, response-dependent sampling is often used in regression settings that involve expensive covariate measurements. Conditional maximum likelihood (CML) is an attractive approach in many cases as it avoids modelling of the covariate distribution, unlike full maximum likelihood. Scott & Wild (2011) introduced an augmented CML approach which is semiparametric efficient in certain settings with a discrete response variable. We consider general regression models and show the Scott-Wild estimator of covariate effects has the same asymptotic efficiency as two empirical likelihood estimators, and that these estimators dominate the CML estimator. We compare the efficiencies of various estimators in simulation studies and illustrate the methodology in a two-phase genetics study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.