Poly(lactic acid) (PLA)/poly(propylene carbonate) (PPC)/mica composites with different amount of chain extender (CE) were melt compounded and then processed via two routes (compression molding and uniaxial stretching) into sheets and films. The tensile, thermal, and oxygen barrier properties of all the samples were investigated.Tensile test showed that the tensile strength and elongation at break of all films were much higher than that of all sheets, especially for PLA/PPC/mica with 0.9-wt% CE composite (CM 3 (CE) 0.9 ) film. The crystallinity of all films increased significantly after uniaxial stretching of sheet samples. The Fourier transform infrared spectroscopy (FTIR) results proved the chemical reactions occurred between PLA/PPC and CE.Scanning electron microscope (SEM) analysis revealed that compatibility and interfacial adhesion of all samples were improved after adding mica and CE, and they were further enhanced after uniaxial stretching. The addition of CE was not favorable to improve the oxygen barrier performance of PLA/PPC/mica sheet samples. However, the oxygen barrier performance of film samples was significantly improved after uniaxial stretching. In particular, the CM 3 (CE) 0.9 film had the lowest oxygen permeability coefficient (1.4 × 10 −15 cm 3 ·cm/(cm 2 ·s·Pa)), and this was the best oxygen barrier properties reported in the literature for PLA-based composites, which was comparable with PA film. This study demonstrated the high efficiency of uniaxial stretching on improvement of properties of composites, which would promote the application of biodegradable polymers in oxygen sensitive food packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.