In land-plant chloroplasts, the grana play multiple roles in photosynthesis, including the potential increase of photosynthetic capacity in light and enhancement of photochemical efficiency in shade. However, the molecular mechanisms of grana formation remain elusive. Here, we report a novel gene, Grana-Deficient Chloroplast1 (GDC1), required for chloroplast grana formation in Arabidopsis (Arabidopsis thaliana). In the chloroplast of knockout mutant gdc1-3, only stromal thylakoids were observed, and they could not stack together to form appressed grana. The mutant exhibited seedling lethality with pale green cotyledons and true leaves. Further blue native-polyacrylamide gel electrophoresis analysis indicated that the trimeric forms of Light-Harvesting Complex II (LHCII) were scarcely detected in gdc1-3, confirming previous reports that the LHCII trimer is essential for grana formation. The Lhcb1 protein, the major component of the LHCIIb trimer, was substantially reduced, and another LHCIIb trimer component, Lhcb2, was slightly reduced in the gdc1-3 mutant, although their transcription levels were not altered in the mutant. This suggests that defective LHCII trimer formation in gdc1-3 is due to low amounts of Lhcb1 and Lhcb2. GDC1 encodes a chloroplast protein with an ankyrin domain within the carboxyl terminus. It was highly expressed in Arabidopsis green tissues, and its expression was induced by photosignaling pathways. Immunoblot analysis of the GDC1-green fluorescent protein (GFP) fusion protein in 35S::GDC1-GFP transgenic plants with GFP antibody indicates that GDC1 is associated with an approximately 440-kD thylakoid protein complex instead of the LHCII trimer. This shows that GDC1 may play an indirect role in LHCII trimerization during grana formation.Photosynthesis is the primary process through which solar energy is converted into chemical energy of organic substances, which serves as the substrate and energy source for various biological events, not only in plants but also in animals. The process is carried out in the thylakoid membranes of plants, algal chloroplasts, and photosynthetic bacteria. The thylakoid membranes of land-plant chloroplasts have a remarkably complex structure and organization.
Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in chloroplast. Here, one thioredoxin-like fold protein, Arabidopsis early chloroplast biogenesis 1 (AtECB1), an allele of MRL7, was identified to regulate PEP function and chloroplast biogenesis. The knockout lines for AtECB1 displayed albino phenotype and impaired chloroplast development. The transcripts of PEP-dependent plastid genes were barely detected, suggesting that the PEP activity is almost lost in atecb1-1. Although AtECB1 was not identified in PEP complex, a yeast two-hybrid assay and pull-down experiments demonstrated that it can interact with Trx Z and FSD3, two intrinsic subunits of PEP complex, respectively. This indicates that AtECB1 may play a regulatory role for PEP-dependent plastid gene expression through these two subunits. AtECB1 contains a βαβαββα structure in the thioredoxin-like fold domain and lacks the typical C-X-X-C active site motif. Insulin assay demonstrated that AtECB1 harbors disulfide reductase activity in vitro using the purified recombinant AtECB1 protein. This showed that this thioredoxin-like fold protein, AtECB1 also has the thioredoxin activity. AtECB1 may play a role in thioredoxin signaling to regulate plastid gene expression and chloroplast development.
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via posttranslational modifications and transcriptional regulation that were recently found.More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Melatonin (N-acetyl-5-methoxytryptamine), a naturally occurring small molecule, can protect plants against abiotic stress after exogenous treatmenting with it. It is not known if melatonin homologs, such as 5-methoxytryptamine and 5-methoxyindole, that are easy and more cost-effective to synthesize can stimulate the plant immune system in the same manner as melatonin. In the present study, we assessed the biological activity of the melatonin homologs, 5-methoxytryptamin and 5-methoxyindole. The results showed that melatonin and its homologs all induced disease resistance against Phytophthora nicotianae in Nicotiana benthamiana plants. The application of all three compounds also induced stomatal closure and the production of reactive oxygen species. Gene expression analysis indicated that the expression of genes involved in hydrogen peroxide (H2O2), nitric oxide (NO) production, and salicylic acid (SA) biosynthesis was significantly upregulated by all three compounds. Four homologs of the melatonin receptors were identified by blasting search with the phytomelatonin receptor in Arabidopsis. Molecular docking studies were also used to identify four putative melatonin receptors in N. benthamiana. Further experimentation revealed that silencing of the melatonin receptors trP47363 and trP13076 in N. benthamiana compromised the induction of stomatal closure, PR-1a gene expression and SA accumulation by all three compounds. Collectively, our data indicate that the induction of defense responses in N. benthamiana by melatonin, 5-methoxytryptamine, and 5-methoxyindole involves the melatonin receptors trP47363 and trP13076.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.