Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor against oxidative stress and neurodegenerative disorders. Phenylethanoid glycosides (PhGs; salidroside, acteoside, isoacteoside, and echinacoside) exhibit antioxidant and neuroprotective bioactivities. This study was performed to investigate the neuroprotective effect and molecular mechanism of PhGs. PhGs pretreatment significantly suppressed H2O2-induced cytotoxicity in PC12 cells by triggering the nuclear translocation of Nrf2 and reversing the downregulated protein expression of heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), glutamate cysteine ligase-catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM). Nrf2 siRNA or HO-1 inhibitor zinc protoporphyrin (ZnPP) reduced the neuroprotective effect. PhGs showed potential interaction with the Nrf2 binding site in Kelch-like ECH-association protein 1 (Keap1). This result may support the hypothesis that PhGs are activators of Nrf2. We demonstrated the potential binding between PhGs and the Keap1-activated Nrf2/ARE pathway, and that PhGs with more glycosides had enhanced effects.
Acteoside and salidroside are major phenylethanoid glycosides (PhGs) in Osmanthus fragrans Lour. flowers with extensive pharmacological activities and poor oral bioavailability. The absorption mechanisms of these two compounds remain unclear. This study aimed to investigate the bioaccessibility of these compounds using an in vitro gastrointestinal digestion model and to examine the absorption and transport mechanisms of PhGs using the Caco-2 cell model. The in vitro digestion model revealed that the bioaccessibility of salidroside (98.7 ± 1.35%) was higher than that of acteoside (50.1 ± 3.04%), and the superior bioaccessibility of salidroside can be attributed to its stability. The absorption percentages of total phenylethanoid glycoside, salidroside, and acteoside were 1.42-1.54%, 2.10-2.68%, and 0.461-0.698% in the Caco-2 model, respectively. Salidroside permeated Caco-2 cell monolayers through passive diffusion. At the concentration of 200 μg/mL, the apparent permeability ( P) of salidroside in the basolateral (BL)-to-apical (AP) direction was 23.7 ± 1.33 × 10 cm/s, which was 1.09-fold of that in the AP-to-BL direction (21.7 ± 1.38 × 10 cm/s). Acteoside was poorly absorbed with low P (AP to BL) (4.75 ± 0.251 × 10 cm/s), and its permeation mechanism was passive diffusion with active efflux mediated by P-glycoprotein (P-gp). This study clarified the bioaccessibility, absorption, and transport mechanisms of PhGs. It also demonstrated that the low bioavailability of acteoside might be attributed to its poor bioaccessibility, low absorption, and P-gp efflux transporter.
Various phytochemicals have been reported to protect against oxidative stress. However, the mechanism underlying has not been systematically evaluated, which limited their application in disease treatment. Nuclear factor erythroid 2−related factor 2 (Nrf2), a central transcription factor in oxidative stress response related to numerous diseases, is activated after dissociating from the cytoskeleton−anchored Kelch−like ECH−associated protein 1 (Keap1). The Keap1-Nrf2 protein-protein interaction has become an important drug target. This study was designed to clarify whether antioxidantive phytochemicals inhibit the Keap1-Nrf2 protein-protein interaction and activate the Nrf2-ARE signaling pathway efficiently. Molecular docking and 3D−QSAR were applied to evaluate the interaction effects between 178 antioxidant phytochemicals and the Nrf2 binding site in Keap1.The Nrf2 activation effect was tested on a H 2 O 2 −induced oxidative−injured cell model. Results showed that the 178 phytochemicals could be divided into high−, medium−, and low−total−score groups depending on their binding affinity with Keap1, and the high−total−score group consisted of 24 compounds with abundant oxygen or glycosides. Meanwhile, these compounds could bind with key amino acids in the structure of the Keap1−Nrf2 interface. Compounds from high−total−score group show effective activation effects on Nrf2. In conclusion, phytochemicals showed high binding affinity with Keap1 are promising new Nrf2 activators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.