In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.
At present, autonomous underwater vehicles (AUVs) cannot perceive local environments in complex marine environments, where fish can obtain hydrodynamic information about the surrounding environment through a lateral line. Inspired by this biological function, an artificial lateral line system (ALLS) was built on a moving bionic carrier using the pressure sensor in this paper. When the carrier operated with different speeds in the flow field, the pressure distribution characteristics surrounding the carrier were analyzed by numerical simulation, where the effect of the flow angle between the fluid velocity direction and the carrier navigation direction was considered. The flume experiment was carried out in accordance with the simulation conditions, and the analysis results of the experiment were consistent with those in the simulation. The relationship between pressure and fluid velocity was established by a fitting method. Subsequently, the pressure difference method was investigated to establish a relationship model between the pressure difference on both sides of the carrier and the flow angle. Finally, a back propagation neural network model was used to predict the fluid velocity, flow angle, and carrier speed successfully in the unknown fluid environment. The local fluid environment perception by moving carrier carrying ALLS was studied which may promote the engineering application of the artificial lateral line in the local perception, positioning, and navigation on AUVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.