Sandwich panels consisting of aluminum face-sheets and honeycomb core are widely used in transportation systems. The composite structure has a high stiffness and strength, but it is susceptible to impacts in service. An experimental investigation of surface deformation and core damage in a honeycomb sandwich panel subjected to three different low-velocity impact energies was undertaken. Surface damage evaluation using 3D laser scanning technology was conducted to assess the surface damage and a comparison was made with two typical indentation profiles which were proposed mathematically in the past. The experimental dent profile shows a good agreement with one of the two analytical dent profiles. The impacted sandwich panel was then cut transversely to study the damage inside the honeycomb core. The number of buckled or collapsed folds under the damaged top face-sheet and the depth of the core damage were utilized as two parameters to quantify the damage of the honeycomb core. It is concluded that the core damage depth and the number of folds is independent of impact energy and is constant within each dent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.