Ultra-high frequency (UHF) radio frequency identification (RFID) tags need to be attached or embedded to objects in various environments to achieve non-contact automatic identification. Graphene shows unique electrical and optical properties, which makes it become a promising material for radio frequency devices. In this paper, the transparent UHF RFID tags were fabricated based on graphene films with different number of stacked layers prepared by chemical vapor deposition (CVD). Through structural design, parameter optimization and experimental measurements, the reading distance of the transparent RFID tags was tested and compared. As the graphene film stacked layers increased, the reading distance of graphene-based RFID tags was farther. The UHF RFID tag based on the CVD-grown graphene with the light transmittance of 88% reached the maximum reading distance of 2.78 m in the frequency range of 860-960 MHz. In addition, the reading distance of graphene-based RFID tags at different bending angles and cycles was measured. The results reveal transparent graphene-based RFID tags have good flexibility and stability and can be used in flexible transparent devices.
Suspended graphene film is of great significance for building high-performance electrical devices. However, fabricating large-area suspended graphene film with good mechanical properties is still a challenge, especially for the chemical vapor deposition (CVD)-grown graphene films. In this work, the mechanical properties of suspended CVD-grown graphene film are investigated systematically for the first time. It is found that monolayer graphene film is hard to maintain on circular holes with a diameter of tens of micrometers, which can be improved greatly by increasing the layer of graphene films. The mechanical properties of CVD-grown multilayer graphene films suspended on a circular hole with a diameter of 70 µm can be increased by 20%, and multilayer graphene films prepared by layer-layer stacking process can be increased by up to 400% for the same size. The corresponding mechanism was also discussed in detail, which might pave the way for building high-performance electrical devices based on high-strength suspended graphene film.
Casein kinase 1α (CK1α) is present in multiple cellular organelles and plays various roles in regulating neuroendocrine metabolism. Herein, we investigated the underlying function and mechanisms of CK1α-regulated thyrotropin (thyroid-stimulating hormone (TSH)) synthesis in a murine model. Immunohistochemistry and immunofluorescence staining were performed to detect CK1α expression in murine pituitary tissue and its localization to specific cell types. Tshb mRNA expression in anterior pituitary was detected using real-time and radioimmunoassay techniques after CK1α activity was promoted and inhibited in vivo and in vitro. Relationships among TRH/L-T4, CK1α, and TSH were analyzed with TRH and L-T4 treatment, as well as thyroidectomy, in vivo. In mice, CK1α was expressed at higher levels in the pituitary gland tissue than in the thyroid, adrenal gland, or liver. However, inhibiting endogenous CK1α activity in the anterior pituitary and primary pituitary cells significantly increased TSH expression and attenuated the inhibitory effect of L-T4 on TSH. In contrast, CK1α activation weakened TSH stimulation by thyrotropin-releasing hormone (TRH) by suppressing protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling. CK1α, as a negative regulator, mediates TRH and L-T4 upstream signaling by targeting PKC, thus affecting TSH expression and downregulating ERK1/2 phosphorylation and CREB transcriptional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.