Influenza A virus (IAV) utilizes multiple strategies to confront or evade host type I interferon (IFN)-mediated antiviral responses in order to enhance its own propagation within the host. One such strategy is to induce the degradation of type I IFN receptor 1 (IFNAR1) by utilizing viral hemagglutinin (HA). However, the molecular mechanism behind this process is poorly understood. Here, we report that a cellular protein, poly(ADP-ribose) polymerase 1 (PARP1), plays a critical role in mediating IAV HA-induced degradation of IFNAR1. We identified PARP1 as an interacting partner for IAV HA through mass spectrometry analysis. This interaction was confirmed by coimmunoprecipitation analyses. Furthermore, confocal fluorescence microscopy showed altered localization of endogenous PARP1 upon transient IAV HA expression or during IAV infection. Knockdown or inhibition of PARP1 rescued IFNAR1 levels upon IAV infection or HA expression, exemplifying the importance of PARP1 for IAV-induced reduction of IFNAR1. Notably, PARP1 was crucial for the robust replication of IAV, which was associated with regulation of the type I IFN receptor signaling pathway. These results indicate that PARP1 promotes IAV replication by controlling viral HA-induced degradation of host type I IFN receptor. Altogether, these findings provide novel insight into interactions between influenza virus and the host innate immune response and reveal a new function for PARP1 during influenza virus infection. IMPORTANCE Influenza A virus (IAV) infections cause seasonal and pandemic influenza outbreaks, which pose a devastating global health concern. Despite the availability of antivirals against influenza, new IAV strains continue to persist by overcoming the therapeutics. Therefore, much emphasis in the field is placed on identifying new therapeutic targets that can more effectively control influenza. IAV utilizes several tactics to evade host innate immunity, which include the evasion of antiviral type I interferon (IFN) responses. Degradation of type I IFN receptor (IFNAR) is one known method of subversion, but the molecular mechanism for IFNAR downregulation during IAV infection remains unclear. Here, we have found that a host protein, poly(ADP-ribose) polymerase 1 (PARP1), facilitates IFNAR degradation and accelerates IAV replication. The findings reveal a novel cellular target for the potential development of antivirals against influenza, as well as expand our base of knowledge regarding interactions between influenza and the host innate immunity.
External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin. In vitro, the EGS variant was 60 times more active in directing RNase P cleavage of the target mRNA than the EGS originating from a natural tRNA. In MCMV-infected cells, the variant reduced mCSP expression by 92% and inhibited viral growth by 8,000-fold. In MCMV-infected mice hydrodynamically transfected with EGS-expressing constructs, the EGS variant was more effective in reducing mCSP expression, decreasing viral production, and enhancing animal survival than the EGS originating from a natural tRNA. These results provide direct evidence that engineered EGS variants with higher targeting activity in vitro are also more effective in reducing gene expression in animals. Furthermore, our findings imply the possibility of engineering potent EGS variants for therapy of viral infections.
Lytic replication of human cytomegalovirus (HCMV), a member of β-herpesvirus, is a highly complicated and organized process that requires its DNA polymerase processivity factor, UL44, the first-reported HCMV replication protein subjected to SUMO post-translational modification (PTM). SUMOylation plays a pleiotropic role in protein functions of host cells and infecting viruses. Particularly, formation of herpesviral replication compartments (RCs) upon infection is induced in proximity to ND10 subnuclear domains, the host cell’s intrinsic antiviral immune devices and hot SUMOylation spots, relying just on SUMOylation of their protein components to become mature and functional in restriction of the viral replication. In this study, to unveil the exact role of SUMO PTM on UL44 involved in HCMV replication, we screened and identified PIAS3, an annotated E3 SUMO ligase, as a novel UL44-interacting protein engaged in cellular SUMOylation pathway. Co-existence of PIAS3 could enhance the UBC9-based SUMO modification of UL44 specifically at its conserved 410 lysine residue lying within the single canonical ψKxE SUMO Conjugation Motif (SCM). Intriguingly, we found this SCM-specific SUMOylation contributes to UL44 co-localization and interaction with subnuclear ND10 domains during infection, which in turn exerts an inhibitory effect on HCMV replication and growth. Together, these results highlight the importance of SUMOylation in regulating viral protein subnuclear localization, representing a novel way of utilizing ND10-based restriction to achieve the self-controlled slower replication and reproduction of herpesviruses.
Influenza virus has the ability to circumvent host innate immune system through regulating certain host factors for its effective propagation. However, the detailed mechanism is still not fully understood. Here, we report that a host sphingolipid metabolism-related factor, sphingosine kinase 2 (SPHK2), upregulated during influenza A virus (IAV) infection, promotes IAV infection in an enzymatic independent manner. The enhancement of the virus replication is not abolished in the catalytic-incompetent SPHK2 (G212E) overexpressing cells. Intriguingly, the sphingosine-1-phosphate (S1P) related factor HDAC1 also plays a crucial role in SPHK2-mediated IAV infection. We found that SPHK2 cannot facilitate IAV infection in HDAC1 deficient cells. More importantly, SPHK2 overexpression diminishes the IFN-β promoter activity upon IAV infection, resulting in the suppression of type I IFN signaling. Furthermore, ChIP-qPCR assay revealed that SPHK2 interacts with IFN-β promoter through the binding of demethylase TET3, but not with the other promoters regulated by TET3, such as TGF-β1 and IL6 promoters. The specific regulation of SPHK2 on IFN-β promoter through TET3 can in turn recruit HDAC1 to the IFN-β promoter, enhancing the deacetylation of IFN-β promoter, therefore leading to the inhibition of IFN-β transcription. These findings reveal an enzymatic independent mechanism on host SPHK2, which associates with TET3 and HDAC1 to negatively regulate type I IFN expression and thus facilitates IAV propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.