We demonstrate a novel distributed acoustic sensing (DAS) system based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Both the phase and the amplitude of the Rayleigh scattering (RS) light can be demodulated in real-time. The technique is based on I/Q demodulation and homodyne detection using a 90° optical hybrid. The theoretical analysis is given, and as a proof of the concept, the dynamic strain sensing is experimentally demonstrated, with a sensing range of 12.566 km and a spatial resolution of 10 m.
A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with 175 km sensing range and 25 m spatial resolution is demonstrated, using the combination of co-pumping second-order Raman amplification based on random fiber lasing, counter-pumping first-order Raman amplification, and counter-pumping Brillouin amplification. With elaborate arrangements, each pumping scheme is responsible for the signal amplification in one particular segment of all three. To the best of our knowledge, this is the first time that distributed vibration sensing is realized over such a long distance without inserting repeaters. The novel hybrid amplification scheme in this work can also be incorporated in other fiber-optic sensing systems for extension of sensing distance.
We propose a phase-sensitive optical time-domain reflectometry (Φ-OTDR) scheme with counterpumping fiber Brillouin amplification (FBA). High-sensitivity perturbation detection over 100 km is experimentally demonstrated as an example. FBA significantly enhances the probe pulse signal, especially at the second half of the sensing fiber, with only 6.4 dBm pump power. It is confirmed that its amplification efficiency is much higher than 28.0 dBm counterpumping fiber Raman amplification. The FBA Φ-OTDR scheme demonstrated in this work can also be incorporated into other distributed fiber-optic sensing systems for extension of sensing distance or enhancement of sensing signal level.
In this paper, we make a comprehensive study on a highly efficient half-open cavity design for high power random fiber laser (RFL). With the theoretical analysis, we optimize the cavity's fiber length for getting higher output power within the scheme, i.e., shorter fiber length is preferred for efficiently harvesting the first order random lasing at the open end of the cavity. As the verification of the theory, we experimentally demonstrate a high output power (7 W), highly efficient (70% optical conversion efficiency) RFL working at 1140 nm, using 10 W 1090 nm laser as the pump source and only 1 km standard single-mode fiber as the distributed cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.