Various densely charged polycationic species, whether of biological or synthetic origin, can penetrate human cells, albeit with variable efficiencies. The molecular underpinnings involved in such transport remain unclear. Herein, we assemble 1, 2 or 3 copies of the HIV peptide TAT on a synthetic scaffold to generate branched cell-permeable prototypes with increasing charge density. We establish that increasing TAT copies dramatically increases the cell penetration efficiency of the peptides while simultaneously enabling the efficient cytosolic delivery of macromolecular cargos. Cellular entry involves the leaky fusion of late endosomal membranes enriched with the anionic lipid BMP. Derivatives with multiple TAT branches induce the leakage of BMP-containing lipid bilayers, liposomal flocculation, fusion and an increase in lamellarity. In contrast, while the monomeric counterpart 1TAT binds to the same extent and causes liposomal flocculation, 1TAT does not cause leakage, induce fusion or a significant increase in lamellarity. Overall, these results indicate that an increase in charge density of these branched structures leads to the emergence of lipid specific membrane-disrupting and cell-penetrating activities.
Many essential proteins cannot fold without help from chaperonins, like the GroELS system of Escherichia coli. How chaperonins accelerate protein folding remains controversial. Here we test key predictions of both passive and active models of GroELS-stimulated folding, using the endogenous E. coli metalloprotease PepQ. While GroELS increases the folding rate of PepQ by over 15-fold, we demonstrate that slow spontaneous folding of PepQ is not caused by aggregation. Fluorescence measurements suggest that, when folding inside the GroEL-GroES cavity, PepQ populates conformations not observed during spontaneous folding in free solution. Using cryo-electron microscopy, we show that the GroEL C-termini make physical contact with the PepQ folding intermediate and help retain it deep within the GroEL cavity, resulting in reduced compactness of the PepQ monomer. Our findings strongly support an active model of chaperonin-mediated protein folding, where partial unfolding of misfolded intermediates plays a key role.
MicroRNA (miRNA) is processed from primary transcripts with hairpin structures (pri-miRNAs) by microprocessors in the nucleus. How cytoplasmic-borne microprocessor components are transported into the nucleus to fulfill their functions remains poorly understood. Here, we report KETCH1 (karyopherin enabling the transport of the cytoplasmic HYL1) as a partner of hyponastic leaves 1 (HYL1) protein, a core component of microprocessor in and functional counterpart of DGCR8/Pasha in animals. Null mutation of is embryonic-lethal, whereas knockdown mutation of caused morphological defects, reminiscent of mutants in the miRNA pathway. knockdown mutation also substantially reduced miRNA accumulation, but did not alter nuclear-cytoplasmic shuttling of miRNAs. Rather, the mutation significantly reduced nuclear portion of HYL1 protein and correspondingly compromised the pri-miRNA processing in the nucleus. We propose that KETCH1 transports HYL1 from the cytoplasm to the nucleus to constitute functional microprocessor in This study provides insight into the largely unknown nuclear-cytoplasmic trafficking process of miRNA biogenesis components through eukaryotes.
Single-stranded RNA bacteriophages (ssRNA phages) infect Gram-negative bacteria via a single maturation protein (Mat), which attaches to a retractile pilus of the host. Here we present structures of the ssRNA phage MS2 in complex with the Escherichia coli F-pilus, showing a network of hydrophobic and electrostatic interactions at the Mat-pilus interface. Moreover, binding of the pilus induces slight orientational variations of the Mat relative to the rest of the phage capsid, priming the Mat-connected genomic RNA (gRNA) for its release from the virions. The exposed tip of the attached Mat points opposite to the direction of the pilus retraction, which may facilitate the translocation of the gRNA from the capsid into the host cytosol. In addition, our structures determine the orientation of the assembled F-pilin subunits relative to the cell envelope, providing insights into the F-like type IV secretion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.