The deep layers of medial entorhinal cortex (MEC) are considered a crucial station for spatial cognition and memory. The deep sublayer Va of MEC (MECVa) serves as the output stage of the entorhinal-hippocampal system and sends extensive projections to brain cortical areas. However, the functional heterogeneity of these efferent neurons in MECVa is poorly understood, due to the difficulty of performing single-neuron activity recording from the narrow band of cell population while the animals are behaving. In the current study, we combined multi-electrode electrophysiological recording and optical stimulation to record cortical-projecting MECVa neurons at single-neuron resolution in freely moving mice. First, injection of a viral Cre-LoxP system was used to express channelrhodopsin-2 specifically in MECVa neurons that project to the medial part of the secondary visual cortex (V2M-projecting MECVa neurons). Then, a lightweight, self-made optrode was implanted into MECVa to identify the V2M-projecting MECVa neurons and to enable single-neuron activity recordings in mice performing the open field test and 8-arm radial maze. Our results demonstrate that optrode approach is an accessible and reliable method for single-neuron recording of V2M-projecting MECVa neurons in freely moving mice, paving the way for future circuit studies designed to characterize the activity of MECVa neurons during specific tasks.
The hypothalamic supramammillary nucleus (SuM) plays a key role in controlling wakefulness, but the downstream target regions participating in this control process remain unknown. Here, using circuit-specific fiber photometry and single-neuron electrophysiology together with electroencephalogram, electromyogram and behavioral recordings, we find approximately half of SuM neurons that project to the medial septum (MS) are wake-active. Optogenetic stimulation of axonal terminals of SuM-MS projection induces a rapid and reliable transition to wakefulness from NREM or REM sleep, and chemogenetic activation of SuMMS projecting neurons significantly increases wakefulness time and prolongs latency to sleep. Consistently, chemogenetically inhibiting these neurons significantly reduces wakefulness time and latency to sleep. Therefore, these results identify the MS as a functional downstream target of SuM and provide evidence for a causal role for this hypothalamic-septal projection in wakefulness control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.