Two-dimensional (2D) ferroelectric transistors hold unique properties and positions, especially talking about low-power memories, in-memory computing, and multifunctional logic devices. To achieve better functions, appropriate design of new device structures and material combinations is necessary. We present an asymmetric 2D heterostructure integrating MoTe2, h-BN, and CuInP2S6 as a ferroelectric transistor, which exhibits an unusual property of anti-ambipolar transport characteristic under both positive and negative drain biases. Our results demonstrate that the anti-ambipolar behavior can be modulated by external electric field, achieving a peak-to-valley ratio up to 103. We also provide a comprehensive explanation for the occurrence and modulation of the anti-ambipolar peak based on a model describing linked lateral-and-vertical charge behaviors. Our findings provide insights for designing and constructing anti-ambipolar transistors and other 2D devices with significant potential for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.