Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.
As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects the growth and development of Myzus persicae (Sulzer) (Homoptera: Aphididae). How M. persicae responds to UV-B stress and the molecular mechanisms underlying this adaptation remain unknown. Here, we analyzed transcriptome data for M. persicae following exposure to UV-B radiation for 30 min. We identified 758 significant differentially expressed genes (DEGs) following exposure to UV-B stress, including 423 upregulated and 335 downregulated genes. In addition, enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases illustrated that these DEGs are associated with antioxidation and detoxification, metabolic and protein turnover, immune response, and stress signal transduction. Simultaneously, these DEGs are closely related to the adaptability to UV-B stress. Our research can raise awareness of the mechanisms of insect responses to UV-B stress.
The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), an important pest of cotton, is detrimental to cotton production. Light from UV-A ultraviolet lamps is regarded as a form of environmental stress for insects. In order to investigate the response of H. armigera exposed to UV-A, we explored Hap38 MAPK expression and functions. We hope that the findings of this study will lay the foundation for future investigations into the insect’s phototaxis mechanism. A p38 MAPK was cloned and named Hap38 MAPK. A phylogenetic tree showed that Hap38 MAPK was highly conserved. The gene was highly expressed in the thorax and females. Under UV-A stress, the expression of the gene decreased significantly. After silencing Hap38 MAPK, the activity of the antioxidant enzymes SOD, POD, CAT, and GR decreased. This study suggested that Hap38 MAPK responds to UV-A irradiation and plays critical roles in the defense response to environmental stresses.
Background: As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects the growth and development of Myzus persicae. Excessive UV-B stress leads to DNA, membrane lipid, and protein damage by the production of reactive oxygen species. However, M. persicae can adaptively respond to such environmental stress by activating the relevant mechanisms in the body. How M. persicae responds to UV-B stress and the molecular mechanisms underlying this adaptation remain unknown. Results: Here, we compared and analyzed transcriptome data for M. persicae following exposure to a light-emitting diode fluorescent lamp and UV-B radiation for 30 min. We identified 758 significant differentially expressed genes (DEGs) following exposure to UV-B stress, including 423 upregulated and 335 downregulated genes. In addition, enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases illustrated that these DEGs are associated with antioxidation and detoxification, metabolic and protein turnover, immune response, and stress signal transduction. Simultaneously, these DEGs are closely related to the adaptability to UV-B stress.Conclusions: Our results suggest that UV-B stress is associated with a wide range of physiological effects in M. persicae. Our research can raise awareness of the mechanisms of insect responses to UV-B stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.