Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a bifunctional enzyme located in the mitochondria. It has been reported to be overexpressed in several malignancies. However, the relationship between the expression of MTHFD2 and non-small cell lung cancer (NSCLC) remains largely unknown. In this study, we found that MTHFD2 was significantly overexpressed in NSCLC tissues and cell lines. Knockdown of MTHFD2 resulted in reduced cell growth and tumorigenicity in vitro and in vivo. Besides, the mRNA and protein expression level of cell cycle genes, such as CCNA2, MCM7 and SKP2, was decreased in MTHFD2 knockdown H1299 cells. Our results indicate that the inhibitory effect of MTHFD2 knockdown on NSCLC may be mediated via suppressing cell cycle-related genes. These findings delineate the role of MTHFD2 in the development of NSCLC and may have potential applications in the treatment of NSCLC. K E Y W O R D S bioinformatics, cell cycle, methylenetetrahydrofolate dehydrogenase 2, non-small cell lung cancer | 1569 YU et al. S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Yu C, Yang L, Cai M, et al. Downregulation of MTHFD2 inhibits NSCLC progression by suppressing cycle-related genes. J Cell Mol Med.
Fibroblast growth factor 21 (FGF21), a primarily liver-derived endocrine factor, has the beneficial effect of protecting blood vessels. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear transcription factor, has been reported to effectively inhibit pulmonary hypertension (PH). The purpose of this study is to investigate the role of FGF21 in hypoxia-induced PH (HPH) and explore the relationship between FGF21 and PPARγ in this disorder. Adult C57BL/6 mice were subjected to four weeks of hypoxia to establish a PH model. The effects of FGF21 and PPARγ agonists and antagonists were investigated in HPH mice, as well as the relationship between FGF21 and PPARγ in this model. Moreover, we investigated the underlying mechanisms of this relationship between FGF21 and PPARγ in vivo and in vitro. In vivo, we found that hypoxia resulted in pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial remodeling, and pulmonary arterial collagen deposition. Furthermore, hypoxia decreased FGF21 and PPARγ levels. These changes were reversed by exogenous FGF21 and a PPARγ agonist and were further enhanced by a PPARγ antagonist. The hypoxia-induced decrease in β-klotho (KLB) expression was improved by the PPARγ agonist and further reduced by the PPARγ antagonist. Exogenous FGF21 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation (Thr172) and PPARγ coactivator-1α (PGC-1α) expression in PH mouse lung homogenates. In vitro, we found that knockdown of AMPK or using an AMPK antagonist inhibited the FGF21-mediated up-regulation of PPARγ expression, and the PPARγ-mediated up-regulation of FGF21 expression was inhibited by knockdown of KLB. These results indicated that FGF21 exerts protective effects in inhibiting HPH. FGF21 and PPARγ mutually promote each other’s expression in HPH via the AMPK/PGC-1α pathway and KLB protein. Impact statement In this study, we reported for the first time that FGF21 alleviated hypoxia-induced pulmonary hypertension through attenuation of increased pulmonary arterial pressure, pulmonary arterial remodeling and collagen deposition in vivo, and we confirmed the mutual promotion of FGF21 and PPARγ in hypoxia-induced pulmonary hypertension. Additionally, we found that FGF21 and PPARγ mutually promote each other’s expression via the AMPK/PGC-1α pathway and KLB protein in vitro and in vivo. Pulmonary hypertension is a progressive and serious pathological phenomenon with a poor prognosis, and current therapies are highly limited. Our results provide novel insight into potential clinical therapies for pulmonary hypertension and establish the possibility of using this drug combination and potential dosage reductions in clinical settings.
Carboxypeptidase A4 (CPA4) is a member of the metallocarboxypeptidase family. A previous study indicated that CPA4 may participate in the modulation of peptide hormone activity and hormone‐regulated tissue growth and differentiation. However, the role of CPA4 in lung tumorigenesis remains unclear. Our study revealed that CPA4 expression was higher in both lung cancer cells and tumor tissues. We performed 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assays, colony‐formation assays, and Cellomics ArrayScan Infinity analysis to demonstrate that CPA4 knockdown inhibited non small–cell lung cancer (NSCLC) cell proliferation. Conversely, ectopic expression of CPA4 enhanced lung cancer cell proliferation. Consistent with these observations, we generated xenograft tumor models to confirm that CPA4 downregulation suppressed NSCLC cell growth. Mechanistically, we revealed that CPA4 downregulation may induce apoptosis and G1‐S arrest by suppressing the protein kinase B/c‐MYC pathway. These results suggest that CPA4 has an oncogenic effect on lung cancer growth. Taken together, we identified a novel gene in lung cancer that might provide a basis for new therapeutic targets.
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disease without a clear mechanism or drugs for treatment. Therefore, it is crucial to reveal the underlying molecular mechanism and identify potential drugs for PAH. In this study, we first integrated three human lung tissue datasets (GSE113439, GSE53408, GSE117261) from GEO. A total of 151 differentially expressed genes (DEGs) were screened, followed by KEGG and GO enrichment analyses and PPI network construction. Five hub genes (CSF3R, NT5E, ANGPT2, FGF7, and CXCL9) were identified by Cytoscape (Cytohubba). GSEA and GSVA were performed for each hub gene to uncover the potential mechanism. Moreover, to repurpose known and therapeutic drugs, the CMap database was retrieved, and nine candidate compounds (lypressin, ruxolitinib, triclabendazole, L-BSO, tiaprofenic acid, AT-9283, QL-X-138, huperzine-a, and L-741742) with a high level of confidence were obtained. Then ruxolitinib was selected to perform molecular docking simulations with ANGPT2, FGF7, NT5E, CSF3R, JAK1, JAK2, JAK3, TYK2. A certain concentration of ruxolitinib could inhibit the proliferation and migration of rat pulmonary artery smooth muscle cells (rPASMCs) in vitro . Together, these analyses principally identified CSF3R, NT5E, ANGPT2, FGF7 and CXCL9 as candidate biomarkers of PAH, and ruxolitinib might exert promising therapeutic action for PAH.
Background and Purpose Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. Experimental Approach The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure. After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by haemodynamic measurement and echocardiography, respectively. Vascular remodelling was evaluated by histological staining. Confocal microscopy and western blot were used to test related protein expression. In vitro cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. Key Results Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated right ventricular dysfunction (RVD) in the murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodelling, attenuating endothelial to mesenchymal transformation and enhancing apoptosis of α‐SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK, and FoxO1 phosphorylation via LGR6. Conclusion and Implications Maresin 1 improved abnormal pulmonary vascular remodelling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.