Anomalous muscle bundles are common in hypertrophic obstructive cardiomyopathy, and they may lead to middle-apical obstruction. Surgical myectomy provides excellent clinical outcomes with low risk for sufficient relief of obstruction and radical correction of intraventricular anomalies in patients with hypertrophic obstructive cardiomyopathy.
ObjectiveTo investigate the feasibility of a CAD system S-detect on a database from a single Chinese medical center.Materials and methodsAn experienced radiologist performed breast US examinations and made assessments of 266 consecutive breast lesions in 227 patients. S-detect classified the lesions automatically in a dichotomous form. An in-training resident who was blind to both the US diagnostic results and histological results reviewed the images afterward. The final histological results were considered as the diagnostic gold standard. The diagnostic performances and interrater agreements were analyzed.ResultsA total of 266 focal breast lesions (161 benign lesions and 105 malignant lesions) were assessed in this study. S-detect had a lower sensitivity (87.07%) and a higher specificity (72.27%) compared with the experienced radiologist (sensitivity 98.1% and specificity 65.43%). The sensitivity and specificity of S-detect were better than that of the resident (sensitivity 82.86% and specificity 68.94%). The AUC value of S-detect (0.807) showed no significant difference with the experienced radiologist (0.817) and was higher than that of the resident (0.758). S-detect had moderate agreement with the experienced radiologist.ConclusionIn this single-center study, a high level of diagnostic performance of S-detect on 266 breast lesions of Chinese women was observed. S-detect had almost equal diagnostic capacity with an experienced radiologist and performed better than a novice reader. S-detect was also distinguished for its high specificity. These results supported the feasibility of S-detect in aiding the diagnosis of breast lesions on an independent database.
The routine assessment to determine the genetic etiology for fetal ultrasound anomalies follows a sequential approach, which usually takes about 6–8 weeks turnaround time (TAT). We evaluated the clinical utility of simultaneous detection of copy number variations (CNVs) and single nucleotide variants (SNVs)/small insertion-deletions (indels) in fetuses with a normal karyotype with ultrasound anomalies. We performed CNV detection by chromosomal microarray analysis (CMA) or low pass CNV-sequencing (CNV-seq), and in parallel SNVs/indels detection by trio-based clinical exome sequencing (CES) or whole exome sequencing (WES). Eight-three singleton pregnancies with a normal fetal karyotype were enrolled in this prospective observational study. Pathogenic or likely pathogenic variations were identified in 30 cases (CNVs in 3 cases, SNVs/indels in 27 cases), indicating an overall molecular diagnostic rate of 36.1% (30/83). Two cases had both a CNV of uncertain significance (VOUS) and likely pathogenic SNV, and one case carried both a VOUS CNV and an SNV. We demonstrated that simultaneous analysis of CNVs and SNVs/indels can improve the diagnostic yield of prenatal diagnosis with shortened reporting time, namely, 2–3 weeks. Due to the relatively long TAT for sequential procedure for prenatal genetic diagnosis, as well as recent sequencing technology advancements, it is clinically necessary to consider the simultaneous evaluation of CNVs and SNVs/indels to enhance the diagnostic yield and timely TAT, especially for cases in the late second trimester or third trimester.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.