A unique mono-component intumescent flame retardant, named PPy-MAPP, of which melamine-coated ammonium polyphosphate (MAPP) was microencapsulated by polypyrrole (PPy), was synthesized and carefully characterized. The obtained PPy-MAPP was applied to epoxy resin (EP) for obtaining flame-retarded EP composites. The results show that PPy-MAPP imparts better flame retardancy and smoke suppression properties to EP compared to the same addition of MAPP. The EP composite with 15 wt% PPy-MAPP easily passes the UL94 V-0 rating and achieves an LOI value of 42.4%, accompanied by a 61.9% reduction in total heat release (THR) and a 73.9% reduction in total smoke production (TSP) when compared with pure EP. The char residue analysis shows that PPy-MAPP can promote a generation of more phosphorus-rich structures in the condensed phase that improve the integrity and intumescence of char against fire. The mechanical test indicates that PPy-MAPP has a less negative effect on the tensile strength and elastic modulus of epoxy resin due to the good compatibility between PPy-MAPP and the EP matrix, as supported by differential scanning calorimetry (DSC) analyses. In this paper, these attractive features of PPy-MAPP provide a new strategy to prepare satisfactory flame retardant and super flame retarding EP composites.
Poly(acrylamide-acrylic acid) (P(AM-co-AA)) was synthesized via the copolymerization of acrylamide and acrylic acid and well characterized by Fourier transform infrared spectroscopy. Afterward, the obtained P(AM-co-AA) was blended with flame retardants to prepare transparent flame-retardant hydrogel applied in the fireproof glass. The influence of poly(acrylamide-acrylic acid) on fire resistance and anti-aging properties of the transparent flame-retardant hydrogels were studied by assorted analysis methods. The optical transparency analysis shows that the light transmittance of the transparent flame-retardant hydrogel gradually decreases with the decreasing mass ratio of acrylamide to acrylic acid in P(AM-co-AA). Heat insulation testing shows that the heat insulation performance of fireproof glass applying the transparent flame-retardant hydrogel firstly decreases and then increases with decreasing mass ratio of acrylamide to acrylic acid in P(AM-co-AA). When the mass ratio of acrylamide to acrylic acid is 1:2, the obtained P(AM-co-AA) endows the resulting flame-retardant hydrogel applied in fireproof glass with the lowest light transmittance of 81.3% and lowest backside temperature of 131.4 °C at 60 min among the samples, which is attributed to the formation of a more dense and expanded char to prevent the heat transfer during combustion, as supported by the digital photos of char residues. The results of TG analysis indicate that P(AM-co-AA) imparts high thermal stability to the resulting hydrogels due to the hydrogen bonds between carboxyl and amide groups. The accelerated aging test shows that the transparent flame-retardant hydrogel containing P(AM-co-AA) is less affected by aging conditions. Especially, when the mass ratio of acrylamide to acrylic acid in P(AM-co-AA) is 4:1, the resulting transparent flame-retardant hydrogel shows a light transmittance of 82.9% and backside temperature of 173.1 °C at 60 min after 7 aging cycles, exhibiting the best comprehensive properties among the samples.
Acrylamide-methacrylic acid copolymer named P (AM-co-MAA) was synthesized via aqueous solution polymerization, and then mixed with crosslinker, flame retardants and initiators to prepare multifunctional transparent flame-retarded hydrogels with transparency, fire resistance and anti-ageing property. The results show that the application of multifunctional transparent flame-retarded hydrogel imparts high level of transparency and excellent fire resistance to the fire-resistant glass, and the light transmittance and fire resistance of the flame-retarded hydrogel increases with the increasing mass ratio of AM to MAA in P(AM-co-MAA). When the mass ratio of AM to MAA is 4:1, the obtained P(AM-co-MAA) imparts the lowest backside temperature of 130 °C at 3600 s and highest light transmittance of 86.1% to the transparent flame-retarded hydrogel. TG and DSC analysis show that the addition of P(AM-co-MAA) increases the thermal stability of the transparent flame-retarded hydrogels due to the formation of numerous hydrogen bonds via the complexation between amide and carboxyl groups. Accelerated ageing test indicates that the transparent flame-retarded hydrogel containing P(AM-co-MAA) exerts durable fire resistance and transparency, and the ageing resistance of the transparent flame-retarded hydrogel depends on the mass ratio of AM to MAA in P(AM-co-MAA). Therefore, this study provides a promising strategy to prepare a novel multifunctional transparent flame-retarded hydrogel with excellent light transmittance, fire resistance and anti-ageing properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.