A series of novel CoFe-based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered-double-hydroxide (LDH) nanosheets at 300-700 °C. The chemical composition and morphology of the reaction products (denoted herein as CoFe-x) are highly dependent on the reduction temperature (x). CO hydrogenation experiments are conducted on the CoFe-x catalysts under UV-vis excitation. With increasing LDH-nanosheet reduction temperature, the CoFe-x catalysts show a progressive selectivity shift from CO to CH , and eventually to high-value hydrocarbons (C ). CoFe-650 shows remarkable selectivity toward hydrocarbons (60% CH , 35% C ). X-ray absorption fine structure, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and density functional theory calculations demonstrate that alumina-supported CoFe-alloy nanoparticles are responsible for the high selectivity of CoFe-650 for C hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar-energy to produce valuable chemicals and fuels from CO .
Preparation of single atom catalysts (SACs) is of broad interest to materials scientists and chemists but remains a formidable challenge. Herein, we develop an efficient approach to synthesize SACs via a precursor-dilution strategy, in which metalloporphyrin (MTPP) with target metals are co-polymerized with diluents (tetraphenylporphyrin, TPP), followed by pyrolysis to N-doped porous carbon supported SACs (M
1
/N-C). Twenty-four different SACs, including noble metals and non-noble metals, are successfully prepared. In addition, the synthesis of a series of catalysts with different surface atom densities, bi-metallic sites, and metal aggregation states are achieved. This approach shows remarkable adjustability and generality, providing sufficient freedom to design catalysts at atomic-scale and explore the unique catalytic properties of SACs. As an example, we show that the prepared Pt
1
/N-C exhibits superior chemoselectivity and regioselectivity in hydrogenation. It only converts terminal alkynes to alkenes while keeping other reducible functional groups such as alkenyl, nitro group, and even internal alkyne intact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.