Twenty-five climate indices based on daily maximum and minimum temperature and precipitation at 15 meteorological stations were examined to investigate changes in temperature and precipitation extremes over the Yarlung Tsangpo River Basin (1970–2017). The trend-free prewhitening (TFPW) Mann–Kendall test and Pettitt’s test were used to identify trends and abrupt changes in the time series, respectively. The results showed widespread significant changes in extreme temperature indices associated with warming, most of which experienced abrupt changes in the 1990s. Increases in daily minimum and maximum temperature were detected, and the magnitude of daily minimum temperature change was greater than that of the daily maximum temperature, revealing an obvious decrease in the diurnal temperature range. Warm days and nights became more frequent, whereas fewer cold days and nights occurred. The frequency of frost and icing days decreased, while summer days and growing season length increased. Moreover, cold spell length shortened, whereas warm spell length increased. Additionally, changes in the precipitation extreme indices exhibited much less spatial coherence than the temperature indices. Spatially, mixed patterns of stations with positive and negative trends were found, and few trends in the precipitation extreme indices at individual stations were statistically significant. Generally, precipitation extreme indices showed a tendency toward wetter conditions, and the contribution of extreme precipitation to total precipitation has increased. However, no significant regional trends and abrupt changes were detected in total precipitation or in the frequency and duration of precipitation extremes.
Understanding the temporal inequality in precipitation is of great importance for water resource management, environmental risk management, and ecological conservation. This study investigated the spatial patterns and trends of the daily precipitation concentration over the Yarlung Tsangpo River Basin using the concentration index (CI) and the Lorentz asymmetric coefficient (LAC). A Mann–Kendall test and Hurst’s rescaled range analysis were used to detect the change in CI trends. The CI ranged from 0.58 to 0.65, suggesting that a quarter of the rainiest days contributed approximately 69–78% of the total precipitation. The LAC analysis indicated that the nonuniform distribution of precipitation was mainly attributed to a large proportion of days with light rainfall. Compared with that of the central region, the daily precipitation in the western and eastern regions was more irregular. At a seasonal scale, the dry season had a less homogeneous spatial distribution of CI compared to that of the wet season. Most areas exhibited no significant trends in CI from 1970 to 2017. A quarter of the stations presented a significant downward trend in CI, which were primarily found in the central and northern regions. In addition, the future trends of CI in most areas mostly agree with those of the current state; however, the majority of stations exhibited an uneven precipitation distribution in the dry season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.