Global climate change has readjusted a global-scale precipitation distribution in magnitude and timing. In mountainous areas, meteorological stations and observation data are very limited, making it difficult to accurately understand the response of precipitation to global climate change. Based on ECMWF Reanalysis v5 precipitation products, Berkeley Earth global temperature, and typical atmospheric circulation indexes, we integrated a gradient descent-nonlinear regression downscaling model, cross wavelet transform, and wavelet correlation method to analyze the precipitation response in Tianshan to global climate change. This study provides a high-resolution (90 m × 90 m) precipitation dataset in Tianshan and confirms that global warming, the North Pacific Pattern (NP), the Western Hemisphere Warm Pool (WHWP), and the Atlantic Multidecadal Oscillation (AMO) are related to the humidification of Tianshan over the past 40 years. The precipitation in Tianshan and global temperature have a resonance period of 8–15 months, and the correlation coefficient is above 0.9. In Tianshan, spring precipitation is determined mainly by AMO, North Tropical Atlantic Sea Level Temperature, Pacific Interdecadal Oscillation (PDO), Tropical North Atlantic Index, WHWP, NP, summer by NP, North Atlantic Oscillation, and PDO, autumn by AMO, and winter by Arctic Oscillation. This research can serve the precipitation forecast of Tianshan and help in the understanding of the regional response to global climate change.
Global warming has led to a serious crisis on regional water resources. Establishing a decision support system (DSS) on the sustainable utilization of water resources for arid areas is an increasingly critical problem. Selecting Xinjiang as a case study, this paper developed a system dynamics (SD) model. Through the simulation operation of the model, we achieved the decision on sustainable utilization of water resources. The extensive economic development is the main factor restricting the sustainable utilization of water resources in Xinjiang. We propose to adjust the planting structure and implement water-saving irrigation in Xinjiang, especially the Tarim Basin and Turpan-Hami Basin. This research provides the sustainable utilization plan of water resources for Xinjiang and its sub-regions in the next 30 years. By 2050, we recommend that the reuse rate of urban domestic water consumption and industrial sewage should reach 75%; the rural domestic water quota should be 70 L/(person·day); water consumption per industrial output value of ten thousand Yuan should be 28 m3; the irrigation water quota should be 5000 m3/hectare in Xinjiang. This research can provide references for the decision on sustainable utilization of water resources in arid regions around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.