Objectives: To assess the predictive value of preoperative gadoxetic acid (GA)-enhanced magnetic resonance imaging (MRI) features and postoperative histopathological grading for early recurrence of hepatocellular carcinoma (HCC) without microvascular invasion (MVI) after curative hepatectomy. Methods: A total of 85 MVI-negative HCC cases were retrospectively analyzed. Cox analyses were used to identify the independent predictors of early recurrence (within a 24 months span). The clinical prediction Model-1 or Model-2 was established without or with postoperative pathological factor, respectively. Nomogram models were constructed and receiver operating characteristic (ROC) curve analysis was used to assess the models’ predictive ability. Internal validation of the prediction models for early HCC recurrence was performed using a bootstrap re-sampling approach. Results: In the multivariate cox regression analysis, Edmondson-Steiner grade, peritumoral hypointensity on hepatobiliary phase (HBP), and relative intensity ratio (RIR) in HBP were identified as independent variables associated with early recurrence. The C-index of the nomogram models and internal validation were both between 0.7 and 0.8, showing good model fitting and calibration effects. The area under the ROC curve (AUC) was 0.781 for Model-1 based on the two preoperative MRI factors. When a third factor, the Edmondson-Steiner grade, was included (Model-2), the AUC increased to 0.834, and the sensitivity increased from 71.4 to 96.4%. Conclusions: Edmondson-Steiner grade, peritumoral hypointensity on HBP, and RIR on HBP can help predict early recurrence of MVI-negative HCC. In comparison with Model-1 (only imaging features), Model-2 (imaging features + histopathological grades) increases the sensitivity in predicting early recurrence of HCC without MVI. Advances in knowledge: Preoperative GA-enhanced MRI signs are of great value in predicting early postoperative recurrence of HCC without MVI, and a combined pathological model was established to evaluate the feasibility and effectiveness of this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.