When the leaf area index (LAI) of a forest reaches 3, the problem of spectrum saturation becomes the main limitation to improving the accuracy of the LAI estimate. A sensitivity analysis of the Grey Level Co-occurrence Matrix (GLCM) parameters which can be applied to satellite image processing and analysis showed that the most important parameters included orientation, displacement and moving window size. We calculated the values of Angular Second Moment (ASM), Entropy (ENT), Correlation (COR), Contrast (CON), Dissimilarity (DIS) and Homogeneity (HOM) from Quickbird panchromatic imagery using a GLCM method. Four orientations, seven displacements and seven window sizes were considered. An orientation of 90° was best for estimating the LAI of black locust forest, regardless of moving window size, displacement and texture parameters. Displacements of 3 pixels appeared to be best. The orientation and window size had only a little influence on these settings. The highest adjusted r2 values were obtained using a 3 × 3 moving window size for ASM and ENT. The tendency of CON, COR, DIS and HOM to vary with window size was significantly affected by orientation. This study can help with parameter selection when texture features from high resolution imagery are used to estimate broad-leaved forest structure information.
Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.