We have studied the morphology of blends of PS/PMMA, PC/SAN24, and PMMA/EVA and compared the morphologies with and without modified organoclay Cloisite 20A or Cloisite 6A clays. In each case we found a large reduction in domains size and the localization of the clay platelets along the interfaces of the components. The increased miscibility was accompanied in some cases, with the reduction of the system from multiple values of the glass transition temperatures to one. In addition, the modulus of all the systems increased significantly. A model was proposed where it was proposed that in-situ grafts were forming on the clay surfaces during blending and the grafts then had to be localized at the interfaces. This blending mechanism reflects the composition of the blend and is fairly nonspecific. As a result, this may be a promising technology for use in processing recycled blends where the composition is often uncertain and price is of general concern.
Morphology, thermal and rheological properties of polymer-organoclay composites prepared by melt-blending of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends with Cloisite organoclays were examined by transmission electron microscopy, small-angle X-ray scattering, secondary ion mass spectroscopy, differential scanning calorimetry, and rheological techniques. Organoclay particles were finely dispersed and predominantly delaminated in PMMA-clay composites, whereas organoclays formed micrometer-sized aggregates in PS-clay composites. In PS/PMMA blends, the majority of clay particles was concentrated in the PMMA phase and in the interfacial region between PS and PMMA. Although incompatible PS/PMMA blends remained phaseseparated after being melt-blended with organoclays, the addition of organoclays resulted in a drastic reduction in the average microdomain sizes (from 1-1.5 m to ca. 300 -500 nm), indicating that organoclays partially compatibilized the immiscible PS/PMMA blends. The effect of surfactant (di-methyl di-octadecyl-ammonia chloride), used in the preparation of organoclays, on the PS/PMMA miscibility was also investigated. The free surfactant was more compatible with PMMA than with PS; the surfactant was concentrated in PMMA and in the interfacial region of the blends. The microdomain size reduction resulting from the addition of organoclays was definitely more significant than that caused by adding the same amount of free surfactant without clay. The effect of organoclays on the rheological properties was insignificant in all tested systems, suggesting weak interactions between the clay particles and the polymer matrix. In the PS system, PMMA, and organoclay the extent of clay exfoliation and the resultant properties are controlled by the compatibility between the polymer matrix and the surfactant rather than by interactions between the polymer and the clay surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.