High-efficient heat dissipation materials are urgently required in advanced electronic packaging technology because effectively releasing the internal heat flow density of electronic devices is a key factor during their operation. In this work, a novel vertical graphene nanosheets/carbon fibers (VGNs/CF) composite film, with a vertically oriented structure and excellent heat dissipation properties, is fabricated on the stainless steel substrate by a facile thermochemical growth method. The preparation of composite film is green, safe, and highly efficient. CF is used as a thermally conductive filler to provide thermal conductivity channels for VGNs, and both of them construct a continuous thermally conductive network. The through-plane thermal conductivity of the VGNs/CF composite film could reach 17.7 W/(m·K), and the addition of CF significantly improved the heat dissipation performance of the composite film compared with the pure VGNs film (13.9 W/(m·K)). Conclusively, the simple preparation method and outstanding thermal conductivity capacity of the VGNs/CF composite film are expected to meet the application requirements of the electronics industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.