Macrophages are vital regulators of skeletal remodeling and osseous repair. Beta-tricalcium phosphate (β-TCP) is a synthetic ceramic biomaterial that has shown promise as bone substitute. However, whether and how β-TCP affects osteogenesis-related responses of macrophages has rarely been studied. The aims of this study were to explore (a) the effects of β-TCP on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) co-cultured with macrophages and (b) on macrophage polarization as well as macrophage gene and protein expression profiles. BMSC osteogenic differentiation capacity in vitro was enhanced in β-TCP-induced co-cultured BMSCs compared to that in BMSC monocultures. We also found that macrophages induced with 25 mg ml−1
β-TCP extract had more significant immune responses and switched to the M2 phenotype. Expression levels of the Wnt signaling pathway modulators wingless-type MMTV integration site family, member 6 (WNT6) and Wnt inhibitory factor 1 (WIF1) were upregulated and downregulated, respectively, in macrophages treated with β-TCP extract. Our findings suggest that β-TCP enhances osteogenic differentiation of BMSCs by inducing macrophage polarization and by regulating the Wnt signaling pathway, thereby highlighting its therapeutic potential for bone healing through osteoimmunomodulatory properties.
Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9–/– mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9–/– mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel’s cartilage and around the mandibular bone in Fgf9–/– mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9–/– mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.