Targeted therapy is highly challenging and urgently needed for patients diagnosed with triple negative breast cancer (TNBC). Here, a synergistic treatment platform with plasmonic–magnetic hybrid nanoparticle (lipids, doxorubicin (DOX), gold nanorods, iron oxide nanocluster (LDGI))–loaded mesenchymal stem cells (MSCs) for photoacoustic imaging, targeted photothermal therapy, and chemotherapy for TNBC is developed. LDGI can be efficiently taken up into the stem cells with good biocompatibility to maintain the cellular functions. In addition, CXCR4 on the MSCs is upregulated by iron oxide nanoparticles in the LDGI. Importantly, the drug release and photothermal therapy can be simultaneously achieved upon light irradiation. The released drug can enter the cell nucleus and promote cell apoptosis. Interestingly, light irradiation can control the secretion of cellular microvehicles carrying LDGI for targeted treatment. A remarkable in vitro anticancer effect is observed in MDA‐MB‐231 with near‐infrared laser irradiation. In vivo studies show that the MSCs‐LDGI has the enhanced migration and penetration abilities in the tumor area via both intratumoral and intravenous injection approaches compared with LDGI. Subsequently, MSCs‐LDGI shows the best antitumor efficacy via chemo‐photothermal therapy compared to other treatment groups in the TNBC model of nude mice. Thus, MSCs‐LDGI multifunctional system represents greatly synergistic potential for cancer treatment.
In cells, mechanical forces play a key role in impacting cell behaviors, including adhesion, differentiation, migration, and death. Herein, a 20 nm mitochondria‐targeted zinc‐doped iron oxide nanocube is designed as a nanospinner to exert mechanical forces under a rotating magnetic field (RMF) at 15 Hz and 40 mT to fight against cancer. The nanospinners can efficiently target the mitochondria of cancer cells. By means of the RMF, the nanocubes assemble in alignment with the external field and produce a localized mechanical force to impair the cancer cells. Both in vitro and in vivo studies show that the nanospinners can damage the cancer cells and reduce the brain tumor growth rate after the application of the RMF. This nanoplatform provides an effective magnetomechanical approach to treat deep‐seated tumors in a spatiotemporal fashion.
Remote control of cells and the regulation of cell events at the molecular level are of great interest in the biomedical field. In addition to chemical compounds and genes, mechanical forces play a pivotal role in regulating cell fate, which have prompted the rapid growth of mechanobiology. From a perspective of nanotechnology, magnetic nanomaterials (MNs) are an appealing option for mechanotransduction due to their capabilities in spatiotemporal manipulation of mechanical forces via the magnetic field. As a newly developed paradigm, magneto-mechanotransduction is harnessed to physically regulate cell fate for biomedical applications. Here, the critical factors that determine the magnetomechanical forces induced by MNs in mechanotransduction are briefly reviewed. Recent innovative approaches and their underlying mechanisms for controlling cell fate are highlighted, which offer possibilities for the remote mechanical manipulation of cells and biomolecules in a precise manner. Promising applications including regenerative medicine and cancer treatment based on magnetomechanical stimulation through MNs are also addressed. Perspectives and challenges in MN-based mechanotransduction are commented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.