Third-party resources (e.g., samples, backbones, and pre-trained models) are usually involved in the training of deep neural networks (DNNs), which brings backdoor attacks as a new training-phase threat. In general, backdoor attackers intend to implant hidden backdoor in DNNs, so that the attacked DNNs behave normally on benign samples whereas their predictions will be maliciously changed to a predefined target label if hidden backdoors are activated by attacker-specified trigger patterns. To facilitate the research and development of more secure training schemes and defenses, we design an open-sourced Python toolbox that implements representative and advanced backdoor attacks and defenses under a unified and flexible framework. Our toolbox has four important and promising characteristics, including consistency, simplicity, flexibility, and co-development. It allows researchers and developers to easily implement and compare different methods on benchmark or their local datasets. This Python toolbox, namely BackdoorBox, is available at https://github.com/THUYimingLi/BackdoorBox.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.