MicroRNAs (miRNAs) play key roles in regulating gene expression and cell functions, which are recognized as potential biomarkers for many human diseases. Sensitive, specific, and reliable detection of miRNA is highly demanded for clinical diagnosis and therapy. Herein, we describe a label-free and low-background fluorescent assay, termed amplified tandem Spinach-based aptamer transcription assay (AmptSpi assay) for highly sensitive miRNA detection by polymeric rolling circle amplicon mediated multiple transcription. Target miRNA is recognized by padlock probe to form polymeric rolling circle amplicon. Then the following transcription process rapidly produces large amounts of repeats of RNA Spinach aptamers, lightened up by the addition of fluorescent dye DFHBI for miRNA quantitative analysis, achieving label-free and nearly zero-background. Besides, the assay could also confer high selectivity to distinguish miRNA among the miRNA family members with 1- or 2-nucleotide (nt) difference. This method was capable of completing detection in human serum sample or cell extracts in hours, indicating great potential in the early diagnosis of diseases.
MicroRNAs (miRNAs) play a critical role in multifarious biological processes and being deemed to be important biomarkers for clinical cancer diagnosis, prognosis, and therapy. Thus, assays for sensitive and accurate quantification of miRNAs are highly demanded. Herein, we have constructed a RNA aptamer involved cascade transcription amplification method (termed RACTA), enabling label-free, ultrasensitive, and specific detection of miRNA. Target miRNA-initiated strand-displacement amplification would allow for the production of plenty of ssDNA that triggers the subsequent transcriptional amplification of spinach RNA aptamers. Consequently, transcribed tremendous spinach aptamers activated fluorophore DFHBI ((Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one) for miRNA quantitative analysis. RACTA outperforms conventional strand displacement amplification (SDA) at both background and amplification rate due to the light-up mechanism of DFHBI dye-Spinach aptamer and cascade signal amplification of RACTA. Thus, the signal-to-noise ratio of RACTA was increased by about 20-fold compared to that of SDA. This RACTA assay could confer a highly sensitive detection of miRNA with a detection limit of 5.12 × 10 −18 M and excellent specificity enabling differentiation between miRNAs and homologous families. Besides, this assay has been successfully demonstrated for quantification of miRNAs in different cell lines. Therefore, the proposed method holds great potential for miRNA biomarker based early diagnosis and prognosis monitoring.
Background The results of previous studies on the usefulness of free triiodothyronine (FT3) to free thyroxine (FT4) are controversial. We investigated the usefulness of FT3, FT4, and FT3/FT4 ratio in differentiating Graves' disease (GD) from destructive thyroiditis. Methods A total of 126 patients with untreated GD, 36 with painless thyroiditis, 18 with painful subacute thyroiditis, and 63 healthy controls, were recruited. The levels of FT3 and FT4 and the FT3/FT4 ratios for the different etiologies of thyrotoxicosis were evaluated separately by receiver operating characteristic (ROC) curve analysis. The expression levels of type 1 and type 2 deiodinase (DIO1 and DIO2) in thyroid tissues were also investigated. Results The optimal cut-off values were 7.215 pmol/L for FT3, 21.71 pmol/L for FT4, and 0.4056 for the FT3/FT4 ratio. The specificity and positive predictive value of the FT3/FT4 ratio were highest for values > 0.4056. DIO1 mRNA expression was significantly higher in the thyroid tissue of patients with GD (P = 0.013). Conclusions We demonstrated that the FT3/FT4 ratio was useful in differentiating GD from destructive thyroiditis. In addition, a relatively high expression of type 1 deiodinase in the thyroid might be responsible for the high FT3/FT4 ratio in patients with GD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.