In this paper, we consider a quasilinear viscoelastic wave equation that features a distributed delay as well as logarithmic nonlinearity. We combine the potential well theory, Faedo-Galerkin's approximation, and some energy estimates to construct the global existence of the solution. With weaker conditions on the relaxation function, we establish explicit and general decay rate results by using the multiplier method and some properties of convex functions. Our results improve and generalize several earlier related results in the literature.
<p style='text-indent:20px;'>In this paper we consider a system of viscoelastic wave equations of Kirchhoff type with dynamic boundary conditions. Supposing the relaxation functions <inline-formula><tex-math id="M1">\begin{document}$ g_i $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M2">\begin{document}$ (i = 1, 2, \cdots, l) $\end{document}</tex-math></inline-formula> satisfy <inline-formula><tex-math id="M3">\begin{document}$ g_i(t)\leq-\xi_i(t)G(g_i(t)) $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M4">\begin{document}$ G $\end{document}</tex-math></inline-formula> is an increasing and convex function near the origin and <inline-formula><tex-math id="M5">\begin{document}$ \xi_i $\end{document}</tex-math></inline-formula> are nonincreasing, we establish some optimal and general decay rates of the energy using the multiplier method and some properties of convex functions. Moreover, we obtain the finite time blow-up result of solution with nonpositive or arbitrary positive initial energy. The results in this paper are obtained without imposing any growth condition on weak damping term at the origin. Our results improve and generalize several earlier related results in the literature.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.