African swine fever (ASF), the highly lethal swine infectious disease caused by the African swine fever virus (ASFV), is a great threat to the swine industry. There is no effective vaccine or diagnostic method to prevent and control this disease currently. The p30 protein of ASFV is an important target for serological diagnosis, expressed in the early stage of viral replication and has high immunogenicity and sequence conservatism. Here, the CP204L gene was cloned into the expression vector pET-30a (+), and the soluble p30 protein was successfully expressed in the E. coli prokaryotic expression system and then labeled with horseradish peroxidase (HRP) to be the enzyme-labeled antigen. Using the purified recombinant p30 protein, a double-antigen sandwich ELISA for ASFV antibody detection was developed. This method exhibits excellent specificity, sensitivity and reproducibility in clinical sample detection with lower cost and shorter production cycles. Taken together, this study provides technical support for antibody detection for ASFV.
In view of the devastating outcomes of fires and explosions, it is imperative to research the dynamic responses of concrete structures at high temperatures. For this purpose, the effects of the strain rate and high temperatures on the dynamic tension behavior and energy characteristics of high-strength concrete were investigated in this paper. Dynamic tests were conducted on high-strength concrete after exposure to the temperatures of 200, 400, and 600 °C by utilizing a 74 mm diameter split Hopkinson pressure bar (SHPB) apparatus. We found that the quasi-static and dynamic tensile strength of high-strength concrete gradually decreased and that the damage degree rose sharply with the rise of temperature. The dynamic tensile strength and specific energy absorption of high-strength concrete had a significant strain rate effect. The crack propagation law gradually changed from directly passing through the coarse aggregate to extending along the bonding surface between the coarse aggregate and the mortar matrix with the elevation of temperature. When designing the material ratio, materials with high-temperature resistance and high tensile strength should be added to strengthen the bond between the mortar and the aggregate and to change the failure mode of the structure to resist the softening effect of temperature.
Rocks in deep coal mines are usually in varying degrees of damage state before they are destabilized by impact loads such as rock bursts. For the problem of the mechanical properties and energy evolution of damaged rocks under impact loads, the authors use static loads with different cyclic load thresholds to act on sandstone specimens to make them in distinct degrees of damage. Then, the rock mechanics system (MTS-816) and the Split Hopkinson pressure bar (SHPB) are employed to perform uniaxial compression and impact dynamics tests on sandstones with different degrees of damage. The results show that, from the perspective of mechanical properties, the uniaxial compressive strength and dynamic compressive strength of the damaged sandstone gradually decrease with the increase of the upper limit of the cycle threshold and both obey the growth law of the quadratic function, and the dynamic strength increase factor (DIF) also decreases with the increase of the cyclic load threshold. In terms of energy, with the increment of the cyclic load threshold, the number of cracks in the damaged sandstone is large and the scale is enormous. Due to the effect of cracks, when the incident energy is a fixed value, the transmission energy decreases with the increase of the damage degree and the change law of the reflection energy is the opposite. The systematic study of the dynamic mechanical properties and energy evolution law of the damaged sandstone provides some reference for the prevention and mechanism research of rock bursts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.