Chung SH (2018) Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combustion and Flame 197: 304-318. Available: http:// dx. AbstractPrevious soot studies in counterflow diffusion flames revealed that the sooting limit curve in regions with large oxygen mole fractions (XO) exhibited marked bending behaviors that indicated a non-monotonic variation of sooting tendency with oxygen concentration. The underlying mechanisms of this bending behavior remained unclear. In this regard, the present study systematically investigated the effect of oxygen mole fraction in the oxidizer stream on the sooting characteristics of ethylene counterflow diffusion flames. We used the near-infrared light extinction technique to measure the soot volume fractions of two types of flames that significantly differed in sooting structures: soot formation oxidation (SFO) flames with a fixed fuel mole fraction (XF) of 0.28 and varying XO between 0.5 and 1.0 and soot formation (SF) flames with pure ethylene (XF = 1.0) in the fuel stream and varied XO from 0.250.3. We also conducted detailed soot modeling studies by combining the gas-phase chemistry with a sectional soot model that accounted for soot inception, soot mass growth, particle coagulation as well as soot oxidation. Our experimental and modeling results demonstrated the non-monotonic relationship between the soot volume fractions with XO in SFO flames. A detailed analysis of the evolutionary process of soot formation revealed that the suppression of soot inception and the enhancement of the soot oxidation process with increasing XO led to a reduction of soot volume fraction. On the contrary, the surface growth rates increased with XO, resulting in an increase in soot mass concentration. These competing effects led to the nonmonotonic variation of soot volume fractions with XO for SFO flames. On the other hand, in SF flames the inception and surface growth of soot both increased as XO increased, resulting in the observed monotonic relationship between soot volume fraction and XO. We also analyzed the soot zone structures and made comparisons between SFO and SF flames.
A light extinction technique is widely-adopted for quantitative measurement of soot volume fractions. The measurement accuracy is dependent on the optical properties of soot, which are expected to vary with the wavelength of incident light and physicochemical environments in which soot is formed. In the present study, a diode laser based light extinction setup, capable of providing light with variable wavelengths ranging from 405 to 1064 nm, was utilized to investigate the in-situ spectral dependence of light absorption for soot formed in counterflow diffusion flames. Soot volume fractions (F V) were inferred from the extinction level of these laser beams for a series of flames parameterized by oxygen/fuel mole fractions, nozzle exit velocities, and fuel types. Special attention was given to distinguish between the soot formation (SF) and soot formation/oxidation (SFO) flames, considering their notable differences in soot evolutions. It was found that the inferred F V as measured with visible light (405670 nm) was always significantly higher than those measured with near-infrared light (> 780 nm). In addition, the quantitative decrease of F V with the increase in light wavelength (λ) was found to be different for soot particles formed at different flame locations and/or flame conditions, even in the spectral range above 780 nm for which polycyclic aromatic hydrocarbon (PAH) interferences are expected to be minimal. This confirms the wavelength dependence of the soot optical property E(m). In particular, the value of E(m) tends to decrease with increasing wavelength and the rate of decrease is lower for more mature soot particles. Furthermore, by fitting the extinction coefficient with wavelength in the near-infrared range, the quantitative relation of E(m) with λ was derived and compared among various flame conditions. The present study demonstrates that soot formed at different conditions have different optical properties. The results are also expected to provide essential information for uncertainty evaluation in literature F V data in counterflow diffusion flames as measured with light extinction, especially for those performed with visible light sources where PAH interference may not be negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.