Pig epiblast-derived pluripotent stem cells are considered to have great potential and broad prospects for human therapeutic model development and livestock breeding. Despite ongoing attempts since the 1990s, no stably defined pig epiblast-derived stem cell line has been established. Here, guided by insights from a large-scale single-cell transcriptome analysis of pig embryos from embryonic day (E) 0 to E14, specifically, the tracing of pluripotency changes during epiblast development, we developed an in vitro culture medium for establishing and maintaining stable pluripotent stem cell lines from pig E10 pregastrulation epiblasts (pgEpiSCs). Enabled by chemical inhibition of WNT-related signaling in combination with growth factors in the FGF/ERK, JAK/STAT3, and Activin/Nodal pathways, pgEpiSCs maintain their pluripotency transcriptome features, similar to those of E10 epiblast cells, and normal karyotypes after more than 240 passages and have the potential to differentiate into three germ layers. Strikingly, ultradeep in situ Hi-C analysis revealed functional impacts of chromatin 3D-spatial associations on the transcriptional regulation of pluripotency marker genes in pgEpiSCs. In practice, we confirmed that pgEpiSCs readily tolerate at least three rounds of successive gene editing and generated cloned gene-edited live piglets. Our findings deliver on the long-anticipated promise of pig pluripotent stem cells and open new avenues for biological research, animal husbandry, and regenerative biomedicine.
The fundamental biological function of nucleoside diphosphate kinase (NDK) is to catalyze the reversible exchange of the ␥-phosphate between nucleoside triphosphate (NTP) and nucleoside diphosphate (NDP). This kinase also has functions that extend beyond its canonically defined enzymatic role as a phosphotransferase. However, the role of NDK in filamentous fungi, especially in Aspergillus flavus (A. flavus), is not yet known. Here we report that A. flavus has two NDK-encoding gene copies as assessed by qPCR. Using gene-knockout and complementation experiments, we found that AfNDK regulates spore and sclerotia development and is involved in plant virulence as assessed in corn and peanut seed-based assays. An antifungal test with the inhibitor azidothymidine suppressed AfNDK activity in vitro and prevented spore production and sclerotia formation in A. flavus, confirming AfNDK's regulatory functions. Crystallographic analysis of AfNDK, coupled with site-directed mutagenesis experiments, revealed three residues (Arg-104, His-117, and Asp-120) as key sites that contribute to spore and sclerotia development. These results not only enrich our knowledge of the regulatory role of this important protein in A. flavus, but also provide insights into the prevention of A. flavus infection in plants and seeds, as well as into the structural features relevant for future antifungal drug development. cro ARTICLE
Fibroblast growth factors (FGFs) regulate embryonic development and homeostasis, including tissue and organ repair and specific aspects of metabolism. The basic FGF and acidic FGF, now known as FGF2 and FGF1, are widely used protein drugs for tissue repair. However, they are susceptible to denaturation at ambient temperatures and during long‐time storage, which will reduce their biological activity. The interaction of FGFs with the sulfated domains of heparan sulfate and heparin is essential for their cellular signaling and stability. Therefore, we analyzed the interactions of FGF1 and FGF2 with four sulfated polysaccharides: heparin, dextran sulfate (DXS), λ‐carrageenan, and chondroitin sulfate. The results of thermal stability and cell proliferation assays demonstrate that heparin, DXS, and λ‐carrageenan bound to both FGFs and protected them from denaturation. Our results suggest heparin, DXS, and λ‐carrageenan are potential formulation materials that bind and stabilize FGFs, and which may also potentiate their activity and control their delivery.
Herbal medicine is mainly prepared from boiling herbal water extracts. Many epoch-making immunosuppressant drugs, such as glycyrrhizic acid (old example) and FTY720 (current example), were developed from herbal secondary metabolites in the boiling water extract by partition with organic solvents. However, few immunostimulants have been discovered by this method. Instead of the usual method, we aimed to find a novel immunostimulant component by two unique methods in the research of herbal medicine: ultracentrifugation and electron microscopy. The immunostimulant was not a secondary metabolite, as expected, but the structure was a nanoparticle formed by a polysaccharide. In addition, we clarified the immune effect of the nanoparticle. Intake of the nanoparticle by phagocytosis resulted in immunostimulant effects by increasing the genes and proteins of inflammatory cytokines in macrophage cells. The immunostimulant effects were inhibited by a phagocytosis inhibitor, cytochalasin D. To the best of our knowledge, this study is the first to describe the discovery of a nanoparticle in boiling herbal water extracts and its immunostimulant properties. This study will provide additional understanding of the efficacy of herbal medicine, in that the immunostimulant nanoparticle universally exists in boiling herbal water extracts. Thus, traditional herbal medicine may be an oldest known nanomedicine. Furthermore, this study suggests that the immunostimulant nanoparticle simply can be obtained from herbal medicine only by ultracentrifugation. We hope that this simple strategy will substantially contribute to drug development, including vaccine adjuvant, in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.