The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the -methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples.
Various biological factors have been implicated in convulsive seizures, involving side effects of drugs. For the preclinical safety assessment of drug development, it is difficult to predict seizure-inducing side effects. Here, we introduced a machine learning-based in vitro system designed to detect seizure-inducing side effects. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices, while 14 drugs were bath-perfused at 5 different concentrations each. For each experimental condition, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which indeed were reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to detect the seizure-inducing side effects of preclinical drugs.
Astrocytes in various brain regions exhibit spontaneous intracellular calcium elevations both in vitro and in vivo; however, neither the temporal pattern underlying this activity nor its function has been fully evaluated. Here, we utilized a long-term optical imaging technique to analyze the calcium activity of more than 4000 astrocytes in acute hippocampal slices as well as in the neocortex and hippocampus of head-restrained mice. Although astrocytic calcium activity was largely sparse and irregular, we observed a subset of cells in which the fluctuating calcium oscillations repeated at a regular interval of ∼30 s. These intermittent oscillations i) depended on type 2 inositol 1,4,5-trisphosphate receptors; ii) consisted of a complex reverberatory interaction between the soma and processes of individual astrocytes; iii) did not synchronize with those of other astrocytes; iv) did not require neuronal firing; v) were modulated through cAMP-protein kinase A signaling; vi) were facilitated under pathological conditions, such as energy deprivation and epileptiform hyperexcitation; and vii) were associated with enhanced hypertrophy in astrocytic processes, an early hallmark of reactive gliosis, which is observed in ischemia and epilepsy. Therefore, calcium oscillations appear to be associated with a pathological state in astrocytes.
Key points Neurons in the retrosplenial cortex (RSC), a cerebral region that connects synaptically with various brain regions, are known to increase neuronal activity in accordance with hippocampal sharp wave‐ripples. Pyramidal cells in granular RSC (gRSC) layer 2/3, but not layer 5, exhibit slowly ramping depolarization and considerably delayed spikes in response to a step‐pulse current injection. The latencies of delayed spikes in RSC layer 2/3 pyramidal neurons were shortened by a preceding current injection. This effect was mimicked by activation of axonal afferents from the subiculum, but not of neocortical afferents. The subiculum is likely to facilitate information processing and flow in the RSC. Abstract The retrosplenial cortex (RSC), a cerebral region involved in diverse cognitive functions, is an anatomical hub that forms monosynaptic connections with various brain areas. Here, we report a unique form of short‐term intrinsic plasticity in mouse granular RSC layer 2/3 pyramidal cells. These cells exhibited delayed spikes in response to somatic current injection, but the spike latencies were shortened by a preceding brief depolarization (priming). This priming‐induced sensitization is distinct from desensitization, which is commonly observed in other cortical neurons. The facilitatory priming effect lasted for more than 3 s, providing a time window for increased sensitivity to RSC inputs. Based on in vitro and in vivo patch‐clamp recordings following optogenetic stimulation of axonal fibres, we found that preactivation of subicular afferents replicated the facilitatory priming effect. The results suggest that subicular inputs to RSC layer 2/3 neurons may modulate subsequent information integration in the RSC layer 2/3 circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.