In this study, a self-made continuous needleless dynamic linear electrospinning technique is employed to fabricate large-scale graphene (Gr)/carbon nanotubes (CNT)/polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibrous membranes. The synergistic effect of Gr and CNT fillers in the PVA/SA membrane is explored in depth by changing the volume ratio (v/v) of Gr and CNT as 10:0, 8:2, 6:4, 4:6, 2:8, and 0:10. Microstructure, functional group, conductivity, and hydrophilicity of PVA/SA/Gr/CNT membranes was characterized. Results show that the linear electrode needleless electrospinning technique can be spun into 200-nm diameter fibers. The PVA/SA/Gr/CNT fibrous membrane has good hydrophilicity and thermal stability. A Gr/CN ratio of 6:4 possessed the optimal synergistic effect, which showed the lowest surface resistivity of 2.53 × 103 Ω/m2. This study will provide a reference for the large-scale preparation of nanofibrous membrane used as a artificial nerve conduit in the future.
The aim of this study was to investigate the feasibility of large-scale preparation of porous polyvinyl alcohol/sodium alginate/graphene (Gr) (Gr-AP) nanofiber membranes using a copper wire needleless dynamic linear electrode electrospinning machine. Furthermore, the effects of Gr concentrations (0, 0.0375, 0.075, 0.25, 0.5, and 0.75 wt.%) on the morphology, electrical, hydrophilicity and thermal properties were evaluated. Results indicate that the dynamic linear electrospun Gr-AP membranes have a high yield of 1.25 g/h and are composed of porous finer nanofibers with a diameter of 141 ± 31 nm. Gr improved the morphology, homogeneity, hydrophobicity and thermal stability of Gr-AP nanofiber membranes. The critical conductive threshold is 0.075 wt.% for Gr, which provides the nanofiber membranes with an even distribution of diameter, an optimal conductivity, good hydrophilicity, appropriate specific surface area and optimal thermal stability. Therefore, needleless dynamic linear electrospinning is beneficial to produce high quality Gr-AP porous nanofiber membranes, and the optimal parameters can be used in artificial nerve conduits and serve as a valuable reference for mass production of nanofiber membranes.
With the aim of achieving controllable mass production of electrospun nanofiber films, this study proposes and investigates the feasibility of using a custom-made linear electrode- electrospun device to produce conductive graphene (GR)-filled polyvinyl alcohol (PVA) nanofibers. The film morphology and diameter of nanofibers are observed and measured to examine the effects of viscosity and conductivity of the PVA/GR mixtures. Likewise, the influence of the content of graphene on the hydrophilicity, electrical conductivity, electromagnetic interference shielding effectiveness (EMSE), and thermal stability of the PVA/GR nanofiber films is investigated. The test results show that the PVA/GR mixture has greater viscosity and electric conductivity than pure PVA solution and can be electrospun into PVA/GR nanofiber films that have good morphology and diameter distribution. The diameter of the nanofibers is 100 nm and the yield is 2.24 g/h, suggesting that the process qualifies for use in large-scale production. Increasing the content of graphene yields finer nanofibers, a smaller surface contact angle, and higher hydrophilicity of the nanofiber films. The presence of graphene is proven to improve the thermal stability and strengthens the EMSE by 20 dB at 150–1500 MHz. Mass production is proven to be feasible by the test results showing that PVA/GR nanofiber films can be used in the medical hygiene field.
Abstract. Carbonized waste cotton were prepared by activate solution carbonization method. The effects of moisture content, carbonization time and carbonization temperature on the yield of carbonization were investigated. At the same time, the adsorption property of direct dye of the carbonized cotton products was studied. Results show that carbonization yield increased first and then decreased with the increasing of the moisture content using pure water as the activate solution at the same other conditions; Carbonization yield decreased as the extension of carbonization temperature and carbonization time. Carbonization yield and adsorption of direct dye increased when using phosphoric acid solution as the activate solution. Adsorption of direct dye increased with the increasing of phosphoric acid concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.