Cosine-based softmax losses [20,29,27,3] significantly improve the performance of deep face recognition networks. However, these losses always include sensitive hyper-parameters which can make training process unstable, and it is very tricky to set suitable hyper parameters for a specific dataset. This paper addresses this challenge by directly designing the gradients for adaptively training deep neural networks. We first investigate and unify previous cosine softmax losses by analyzing their gradients. This unified view inspires us to propose a novel gradient called P2SGrad (Probability-to-Similarity Gradient), which leverages a cosine similarity instead of classification probability to directly update the testing metrics for updating neural network parameters. P2SGrad is adaptive and hyperparameter free, which makes the training process more efficient and faster. We evaluate our P2SGrad on three face recognition benchmarks, LFW [7], MegaFace [8], and IJB-C [16]. The results show that P2SGrad is stable in training, robust to noise, and achieves state-of-the-art performance on all the three benchmarks.
Knowledge Distillation (KD) aims at improving the performance of a low-capacity student model by inheriting knowledge from a high-capacity teacher model. Previous KD methods typically train a student by minimizing a task-related loss and the KD loss simultaneously, using a pre-defined loss weight to balance these two terms. In this work, we propose to first transfer the backbone knowledge from a teacher to the student, and then only learn the task-head of the student network. Such a decomposition of the training process circumvents the need of choosing an appropriate loss weight, which is often difficult in practice, and thus makes it easier to apply to different datasets and tasks. Importantly, the decomposition permits the core of our method, Stage-by-Stage Knowledge Distillation (SSKD), which facilitates progressive feature mimicking from teacher to student. Extensive experiments on CIFAR-100 and ImageNet suggest that SSKD significantly narrows down the performance gap between student and teacher, outperforming state-of-the-art approaches. We also demonstrate the generalization ability of SSKD on other challenging benchmarks, including face recognition on IJB-A dataset as well as object detection on COCO dataset.
Enormous waves of technological innovations over the past several years, marked by the advances in AI technologies, are profoundly reshaping the industry and the society. However, down the road, a key challenge awaits us, that is, our capability of meeting rapidly-growing scenario-specific demands is severely limited by the cost of acquiring a commensurate amount of training data. This difficult situation is in essence due to limitations of the mainstream learning paradigm: we need to train a new model for each new scenario, based on a large quantity of well-annotated data and commonly from scratch. In tackling this fundamental problem, we move beyond and develop a new learning paradigm named INTERN. By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability. We evaluate our model on 26 well-known datasets that cover four categories of tasks in computer vision. In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data, often by a significant margin. This is an important step towards a promising prospect where such a model with general vision capability can dramatically reduce our reliance on data, thus expediting the adoption of AI technologies. Furthermore, revolving around our new paradigm, we also introduce a new data system, a new architecture, and a new benchmark, which, together, form a general vision ecosystem to support its future development in an open and inclusive manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.