The Virus Pathogen Database and Analysis Resource (ViPR, www.ViPRbrc.org) is an integrated repository of data and analysis tools for multiple virus families, supported by the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers (BRC) program. ViPR contains information for human pathogenic viruses belonging to the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and Togaviridae families, with plans to support additional virus families in the future. ViPR captures various types of information, including sequence records, gene and protein annotations, 3D protein structures, immune epitope locations, clinical and surveillance metadata and novel data derived from comparative genomics analysis. Analytical and visualization tools for metadata-driven statistical sequence analysis, multiple sequence alignment, phylogenetic tree construction, BLAST comparison and sequence variation determination are also provided. Data filtering and analysis workflows can be combined and the results saved in personal ‘Workbenches’ for future use. ViPR tools and data are available without charge as a service to the virology research community to help facilitate the development of diagnostics, prophylactics and therapeutics for priority pathogens and other viruses.
Enhanced near-field at noble metal nanoparticle surfaces due to localized surface plasmon resonance (LSPR) has been researched in fields ranging from biomedical to photoelectrical applications. However, it is rarely explored on nonmetallic nanomaterials discovered in recent years, which can also support LSPR by doping-induced free charge carriers, let alone the investigation of an intricate system involving both. Here we construct a dual plasmonic hybrid nanosystem Au-Cu9S5 with well controlled interfaces to study the coupling effect of LSPR originating from the collective electron and hole oscillations. Cu9S5 LSPR is enhanced by 50% in the presence of Au, and the simulation results confirm the coupling effect and the enhanced local field as well as the optical power absorption on Cu9S5 surface. This enhanced optical absorption cross section, high photothermal transduction efficiency (37%), large light penetration depth at 1064 nm, excellent X-ray attenuation ability, and low cytotoxicity enable Au-Cu9S5 hybrids for robust photothermal therapy in the second near-infrared (NIR) window with low nanomaterial dose and laser flux, making them potential theranostic nanomaterials with X-ray CT imaging capability. This study will benefit future design and optimization of photoabsorbers and photothermal nanoheaters utilizing surface plasmon resonance enhancement phenomena for a broad range of applications.
SummaryLymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.