PurposeSurrogate-assisted evolutionary algorithms (SAEAs) are the most popular algorithms used to solve design optimization problems of expensive and complex engineering systems. However, it is difficult for fixed surrogate models to maintain their accuracy and efficiency in the face of different issues. Therefore, the selection of an appropriate surrogate model remains a significant challenge. This paper aims to propose a dynamic adaptive hybrid surrogate-assisted particle swarm optimization algorithm (AHSM-PSO) to address this issue.Design/methodology/approachA dynamic adaptive hybrid selection method (AHSM) is proposed. This method can identify multiple ensemble models formed by integrating different numbers of excellent individual surrogate models. Then, according to the minimum root-mean-square error, the best suitable surrogate model is dynamically selected in each generation and is used to assist PSO.FindingsExperimental studies on commonly used benchmark problems, and two real-world design optimization problems demonstrate that, compared with existing algorithms, the proposed algorithm achieves better performance.Originality/valueThe main contribution of this work is the proposal of a dynamic adaptive hybrid selection method (AHSM). This method uses the advantages of different surrogate models and eliminates the shortcomings of experience selection. Furthermore, the empirical results of the comparison of the proposed algorithm (AHSM-PSO) with existing algorithms on commonly used benchmark problems, and two real-world design optimization problems demonstrate its competitiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.