ObjectiveCognitive impairment (CI) is a common disorder in patients with epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs would be beneficial in reality. This study proposed to construct a diagnostic model for CI in PWEs using the clinical and the phase locking value (PLV) functional connectivity features of the electroencephalogram (EEG).MethodsPWEs who met the inclusion and exclusion criteria were divided into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The 23 clinical features and 684 PLVEEG features at the time of patient visit were screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct diagnostic models of CI in PWEs either with pure clinical features, pure PLVEEG features, or combined clinical and PLVEEG features. The performance of these models was assessed using a five-fold cross-validation method.ResultsGBDT-built model with combined clinical and PLVEEG features performed the best with accuracy, precision, recall, F1-score, and an area under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top 5 features found to influence the model performance based on the Fisher scores were the magnetic resonance imaging (MRI) findings of the head for abnormalities, educational attainment, PLVEEG in the beta (β)-band C3-F4, seizure frequency, and PLVEEG in theta (θ)-band Fp1-Fz. A total of 12 of the top 5% of features exhibited statistically different PLVEEG features, while eight of which were PLVEEG features in the θ band.ConclusionThe model constructed from the combined clinical and PLVEEG features could effectively identify CI in PWEs and possess the potential as a useful objective evaluation method. The PLVEEG in the θ band could be a potential biomarker for the complementary diagnosis of CI comorbid with epilepsy.
Aim To analyze whether the Lempel–Ziv Complexity (LZC) in quantitative electroencephalogram differs between the temporal lobe epilepsy (TLE) patients with or without cognitive impairment (CI) and explore the diagnostic value of LZC for identifying CI in TLE patients. Methods Twenty‐two clinical features and 20‐min EEG recordings were collected from 48 TLE patients with CI and 27 cognitively normal (CON) TLE patients. Seventy‐six LZC features were calculated for 19 leads in four frequency bands (alpha, beta, delta, and theta). The clinical and LZC features were compared between the two groups. A support vector machine (SVM) was subsequently constructed using the leave‐one‐out method of cross‐validation for LZC features with statistical differences. Results Regarding the clinical features, the level of education (p < .001), hippocampal atrophy and sclerosis (p = .029), and depression (p = .037) were statistically different between the two groups. For the LZC features, there were statistically significant differences in the alpha (Fp1, Fz, Cz, Pz, C3, C4, T3, T4, T5, T6, F3, F4, F7, F8, O1, and O2), beta (Fp2), and theta (F7) oscillations. The mean LZC in the alpha band was higher in the TLE‐CI group than that in the CON group, and there were no differences in the remaining bands. The SVM model showed 74.51% accuracy, 79.63% sensitivity, 84.30% F1 score, 68.75% specificity, and .85 area under the curve scores. Conclusions The LZC in the alpha band might have the potential to be used as a biomarker for the diagnosis of TLE combined with CI. The TLE‐CI group, on the other hand, exhibited a higher degree of complexity in alpha oscillations, which were widespread and occurred in all brain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.