<abstract>
<p>Human behavior recognition has always been a hot spot for research in computer vision. In this paper, we propose a novel video behavior recognition method based on Actional-Structural Graph Convolution and a Temporal Extension Module under the framework of a Spatio-Temporal Graph Convolution Neural Network, which can optimize the spatial and temporal features simultaneously. The basic network framework of our method consists of three parts: spatial graph convolution module, temporal extension module and attention mechanism module. In the spatial dimension, the action graph convolution is utilized to obtain abundant spatial features by capturing the correlations of distant joint features, and the structural graph convolution expands the existing skeleton graph to acquire the spatial features of adjacent joints. In the time dimension, the sampling range of the temporal graph is expanded for extracting the same and adjacent joints of adjacent frames. Furthermore, attention mechanisms are introduced to improve the performance of our method. In order to verify the effectiveness and accuracy of our method, a large number of experiments were carried out on two standard behavior recognition datasets: NTU-RGB+D and Kinetics. Comparative experiment results show that our proposed method can achieve better performance.</p>
</abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.