Autophagy is a multistep process in which cytoplasmic components, including invading pathogens, are captured by autophagosomes that subsequently fuse with degradative lysosomes. Negative-strand RNA viruses, including paramyxoviruses, have been shown to alter autophagy, but the molecular mechanisms remain largely unknown. We demonstrate that human parainfluenza virus type 3 (HPIV3) induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in increased virus production. The viral phosphoprotein (P) is necessary and sufficient to inhibition autophagosome degradation. P binds to SNAP29 and inhibits its interaction with syntaxin17, thereby preventing these two host SNARE proteins from mediating autophagosome-lysome fusion. Incomplete autophagy and resultant autophagosome accumulation increase extracellular viral production but do not affect viral protein synthesis. These findings highlight how viruses can block autophagosome degradation by disrupting the function of SNARE proteins.
A high-performance multi-bit organic transistor nonvolatile-memory, with good mechanical durability and environmental stability, was prepared for the first time on a paper substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.