With the rapid development of location-based services in the field of mobile network applications, users enjoy the convenience of location-based services on one side, while being exposed to the risk of disclosure of privacy on the other side. Attacker will make a fierce attack based on the probability of inquiry, map data, point of interest (POI), and other supplementary information. The existing location privacy protection techniques seldom consider the supplementary information held by attackers and usually only generate single cloaking region according to the protected location point, and the query efficiency is relatively low. In this paper, we improve the existing LBSs system framework, in which we generate double cloaking regions by constraining the supplementary information, and then k-anonymous task is achieved by the cooperation of the double cloaking regions; specifically speaking, k dummy points of fixed dummy positions in the double cloaking regions are generated and the LBSs query is then performed. Finally, the effectiveness of the proposed method is verified by the experiments on real datasets.
Reconstruction of networks from high-throughput expression data is an important tool to identify new regulatory relations. Given that nonlinear and complex relations exist between biological units, methods that can utilize nonlinear dependencies may yield insights that are not provided by methods using linear associations alone. We have previously developed a distance to measure predictive nonlinear relations, the Distance based on Conditional Ordered List (DCOL), which is sensitive and computationally efficient on large matrices. In this study, we explore the utility of DCOL in the reconstruction of networks, by combining it with local false discovery rate (lfdr)–based inference. We demonstrate in simulations that the new method named nlnet is effective in recovering hidden nonlinear modules. We also demonstrate its utility using a single cell RNA seq dataset. The method is available as an R package at https://cran.r-project.org/web/packages/nlnet.
Since critical segments on a transportation network vary over time and are determined by the nature of traffic systems, the identification of critical segments is the basis for realizing area-wide traffic coordination control and regional traffic state optimization. For decades, the identification of critical segments of dynamic traffic flow networks has attracted wide attention. In recent years, some important advances have been made in the related research on the identification of critical segments using the theory of percolation which validates the impact of critical segments by increasing the speed value of critical segments. However, most of them failed to take into account highly correlated characteristics between adjacent segments, which causes identification results cannot be validated effectively and efficiently. In this paper, we improve the existing critical segments identification methods by considering the highly correlated characteristics. A verification method based on ego-networks is proposed that improves the ego-networks speed of critical segments to verify the accuracy of identification results. The experiment shows the method can verify the validity of critical segments recognition results more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.