Cisplatin (DDP) is widely used in cancer treatment, but DDP can cause skeletal muscle atrophy and cachexia. This study explored the effect and mechanism of daidzein (DAI) in reducing DDP‐induced skeletal muscle atrophy and cachexia in vivo and in vitro. DAI alleviated the weight, food intake, muscle, adipose tissue, kidney weight and forelimb grip of LLC tumour‐bearing mice after DDP treatment, and did not affect the antitumour effect of DDP. DAI can reduce the decrease of the cross‐sectional area of skeletal muscle fibre‐induced by DDP and prevent the change of fibre type proportion. In skeletal muscle, it can inhibit Glut4/AMPK/FoxO pathway, down‐regulate the expression of atrogin1 and MuRF1, and inhibit skeletal muscle protein degradation. In DDP treated C2C12 myotubes, DAI could inhibit Glut4/AMPK/FoxO pathway to reduce myotubes atrophy, while AMPK agonist MK‐3903 could reverse the protective effect of DAI. These results suggest that DAI can alleviate DDP‐induced skeletal muscle atrophy by downregulating the expression of Atrogin1 and MuRF1 through the regulation of Glut4/AMPK/FoxO pathway.
Skeletal muscle atrophy is an important feature of cancer cachexia, which can be induced by chemotherapy, and affects the survival and quality of life of cancer patients seriously. No specific drugs for cancer cachexia have been applied in clinical practice. This study explored the therapeutic effect of linalool (LIN) on cisplatin (DDP) induced skeletal muscle atrophy. In vivo, LIN can improve skeletal muscle weight loss, anorexia, muscle strength decline and other cachexia symptoms caused by cisplatin treatment in a Lewis lung cancer tumor bearing mouse model, and cause no adverse effects on the anti-tumour effect. LIN treatment decreased the expression of muscle RING-finger protein-1 (MuRF1) and Atrogin1(MAFbx) in muscle, and the activation of insulin-like growth factor-1 (IGF-1)/protein kinase B (Akt)/forkhead box O (FoxO) pathway was observed. In vitro, LIN alleviated DDP induced C2C12 myotube atrophy, and IGF-1 receptor inhibitor Picropodophyllin (PIC), which had no adverse effect on C2C12 myotube cells, could reverse the protective effect of LIN. These results indicate that LIN down-regulates the expression of Atrogin1 and MuRF1 through the IGF-1/Akt/FoxO pathway, alleviating DDP-induced muscle atrophy and improving cachexia symptoms. LIN has the potential to be developed as a drug against cancer cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.