This work proposes an underwater wireless optical communication (UWOC) system based on computational temporal ghost imaging (CTGI) and a low-bandwidth high-sensitivity avalanche photodiode. After measuring the attenuation coefficient of water, a series of neutral density filters is used to attenuate the optical power to estimate the distance of UWOC. Experimental results show that under the conditions of 4 GHz transmitting frequency and 144.37 m estimated distance, through CTGI, we can achieve error-free transmission, and the peak signal-to-noise ratio is much higher than on–off keying. Additionally, after adopting the segmented reconstruction method, under the condition of 4 GHz transmitting frequency and 193.10 m estimated distance, we can also achieve error-free transmission. At the same time, the relationship between UWOC performance and the number of segments is also studied. This research provides a novel UWOC technique that enables high-frequency transmission signals to be detected by a low-bandwidth photodetector for long-distance UWOC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.